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Abstract

The objective of the thesis is to provide a focused, comprehensive code based on Computational Fluid

Dynamics to be applied to the study of natural and mixed convection of the air located outside an external

cylindrical receiver of a Concentrating Solar Power (CSP) plant. CSP plants are a rapidly improving

technology that is going to play an increasingly important role in electricity production in the decades to

come. Convection of outer air in CSP plants represent a major concern mainly for two reasons: it must

be solved to assess the thermal balance at the receiver and to calculate the local temperature of the

materials; in fact, failure still represents an issue for the design of this component. The code will need

to be able to describe both aspects. Therefore, a Direct Numerical Simulation approach is used, since

it is able to solve thoroughly the three main equations that govern convection: the mass, momentum

and energy conservation equations. In order to evaluate the change of the thermophysical properties

due to the variation of temperature, a non-Boussinesq approach is proposed to solve the equations.

After a contextualization of the external air convective losses of a Central Receiver System, the code

is progressively built and validated, and a possible setup for its application to the thermal receiver is

presented.
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Resumo

O objetivo da presente tese é o desenvolvimento de um código abrangente e dedicado a ser aplicado

ao estudo das convecções natural e mista em torno de um receptor cilı́ndrico externo de uma central

de energia solar com concentração para produção de eletricidade (CSP). As centrais CSP são uma

tecnologia em rápido desenvolvimento e que irá desempenhar um papel fundamental na produção de

eletricidade nas próximas décadas. A convecção em torno dos recetores de centrais CSP reveste-

se da maior importância e é um processo que tem de ser conhecido com duas finalidades: cálculo do

balanço térmico do recetor; cálculo das temperaturas locais - a falha dos materiais devido à temperatura

continua a ser um dos maiores problemas a solucionar no projeto deste componente. O código terá de

ser capaz de descrever ambos os aspetos. Deste modo, foi usada uma abordagem de Simulação

Numérica Direta pois permite resolver simultaneamente as três principais equações que governam a

convecção: conservação de massa, momento e energia. Para estimar as variações das propriedades

fı́sicas dos materiais com a temperatura é proposta a uma abordagem do tipo non-Boussinesq para

resolver as equações. Após uma contextualização das perdas convectivas devidas ao ar exterior num

sistema de recetor central, o código é progressivamente construı́do e validado e um caso possı́vel da

sua aplicação a uma recetor é apresentado.

Palavras Chave

Energia Solar com Concentração; Mecânica dos Fluidos Computacional; Recetor Térmico; Convecção

Natural.
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Renewable energy has been achieving an increasingly large impact on electricity generation in the

last decades, especially in the developed countries. Despite being known since the 19th century as

hydroelectricity, its exploitation saw a recent acceleration, resulting in an increase of renewable energy

production from 1.29Mtoe in 2000 up to 1.89Mtoe in 2014 (roughly a 50% increase) [1]. This is mainly

due to two principal causes: the improvement of the existing technologies, both in terms of efficiency and

profitability, and the growing interest of the public administrations, more and more concerned about the

problematics of the well-established fossil-fuel energy generation. For this reason, in a future perspective

the clean energy share is expected to rise at a high rate, and producers must follow the technological

trend promoted by research and development. To do so, it has always been important to develop tools

that describe the main phenomena involved in the power generation, in order to obtain a deep knowledge

of the whole process. The reasons are several. Firstly, a correct modelization leads to a maximization of

the efficiency. Efficiency is a crucial factor in energy generation, because of its direct impact on the cost

of energy: a high efficiency involves lower costs and therefore major competitiveness. From this point

of view, a consistent model is also responsible for a better understanding of the most critical processes.

This helps to choose the most suitable technologies to adopt, leading to an optimization of the costs

(initial investment and Operation & Maintenance (O&M) during the lifespan of the facility), as well as

major safety.

The physical phenomena involved in energy production are countless: material strain, fatigue, phase

change, oxidation, molecular diffusion, nuclear reaction, etc. However, any technology can be somehow

identified by its energy transformation processes, that are crucial within the whole energy production.

The traditional fossil-fuel energy transformation passes through four typical main steps: firstly a com-

bustion increases the enthalpy of an oxidizing agent (usually oxygen, mixed with air), then the heat

transfer increases the enthalpy of another fluid (the so-called “energy vector”), subsequently the im-

pact of the fluid with a turbine makes the latter increase its rotation, and finally the electromagnetic

interaction of an electric machine converts the kinetic energy of the turbine into the energy associated

with the electric field generated. At least one of these energy transformations occurs also in any type

of renewable energy production. In particular, heat transfer and kinetic energy transfer are particularly

interesting to be analyzed, because they occur with almost all technologies and are the main ones that

affect the efficiency (for instance, heat transfer in Concentrated Solar Power (CSP) and kinetic energy

transfer in Wind Energy). Many times, heat and kinetic energy transfer occur in a single process si-

multaneously. In fact, the phenomena are strictly correlated, and most of the times cannot be treated

as separated. Let us think, for instance, about a heater in a room. The temperature gradient makes

the air move, since hot air is lighter than cold air. This motion transports the hot air, that consequently

heats the nearby cold air through thermal diffusion. Heat transfer is responsible for motion, but motion is

responsible for heat transfer as well. Even though these two phenomena cannot be treated separately,
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it is interesting to notice that they can always be treated as a whole using the conservation equation

of three physical properties: mass, momentum, and energy. The three equations are, respectively, the

continuity equation, the Navier-Stokes equation, and the thermal energy equation.

1.1 The reason for Computational Fluid Dynamics

The solution of this system of equations helps to describe energy transformation processes and can

be used to optimize the output of a power plant, thanks to a correct design of the components. Solving

the equations, though, is not an easy task. In very few cases some of them can be solved analytically;

for instance, in a 1D laminar flow in a tube. In most occurrences, however, the complexity of the problem

makes it impossible to obtain an analytical solution. As a consequence, two main approaches are

available: the use of empirical correlations and the use of numerical simulation.

An empirical correlation is a formula that comes from experimental evidence: although it is not sup-

ported by a strict and rigorous theoretical model, it has been proved to be exhaustive to describe a

phenomenon in its particular configuration. Yet these formulas are not rigorously justified by the theory,

several times they are elaborated starting from a theoretical reasoning. Correlations are widely used in

engineering, since they are a reliable tool, having been already tested practically. However, they feature

some drawbacks. Firstly, many times they are only capable to describe a phenomenon as a whole,

giving, as a result, a global variable, that is usually an average of the values in the entire region under

study. Sometimes a general approach can be sufficient, but in numerous cases it is not: for instance,

when designing a pipe, it is important to know the maximum operating temperature that it is expected to

reach, not only the average. In other cases, it is crucial to understand where maxima and minima of local

variables occur, to design components differently depending on the locations. Another shortcoming of

the use of correlations is that many times they are strictly related to some specific configurations, or at

least they are proved to be valid only for some of them.

This is the reason why a second approach is used as an alternative to correlations: numerical anal-

ysis. The aim of this method is to provide a stable, exhaustive and precise numerical solution of the

phenomenological equations that describe a particular physical event. The reason why it is frequently

not possible to solve these laws analytically is that they involve Partial Differential Equations (PDEs).

The numerical simulation applied to fluid motion is called Computational Fluid Dynamics (CFD). CFD

consists in a few basic steps. In the first place, all the infinitesimal terms are discretized by means of

mathematical operators, so that a physical quantity is associated with them. Then, the domain is subdi-

vided into a definite number of elements to be analyzed; these elements become the unknowns of the

system of equations. With this approach, the original PDEs are reduced to a set of algebraic equations,

the solution of which can be calculated through a computer. Of course every model is based on some
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hypotheses and assumptions, but once its limits are defined, numerical analysis is the procedure that

provides the most accurate description of the phenomenon it is referred to. Still CFD has its limitations,

too. Since it is a numerical method, the solution cannot be the exact one, given that the equations

solved are not the real ones, but their approximation. Moreover, whenever an implicit method is used,

any single unknown quantity converges to a value such that the algebraic equations give an error minor

than a predefined convergence parameter; this error, although close to zero (normally it ranges from

10−4 to 10−6), is impossible to avoid. Finally, a numerical simulation can reach an excessive Central

Processing Unit (CPU) computational time. This occurs, for example, when the mesh needed to provide

a correct solution needs to be extremely fine.1 In fluid dynamics, this usually occurs in highly-turbulent

flows, in which the eddy scales are remarkably small. These drawbacks are the reason why, in many

cases, correlations are still preferred: ultimately, the objective is to seek a trade-off between accuracy

and rapid solution.

1.2 Objective of the Thesis

The aim of this thesis is to propose an efficient and exhaustive method to describe the natural con-

vection of external air at a thermal receiver of a CSP plant. Natural convection processes are governed

by the three equations previously mentioned: mass, momentum, and energy conservation. It will be

shown that a description of natural convection using a correlation method does not provide a sufficiently

strong result: correlations are not capable to describe all the important phenomena that can arise in the

heat and mass transfer processes of a fluid. Therefore, CFD will be the selected methodology to solve

the equations, given the much higher reliability that it entails. Direct Numerical Simulation will be the

CFD method used; this approach solves completely the three equations cited at any scale of motion of

the fluid, giving particularly reliable results. A comprehensive method of solving the equations will be

presented: the method considers the variation of the thermophysical properties of air due to the change

of temperature. This method results to be more realistic than the assumption of constant thermophysical

properties, since at the receiver the high temperatures can significantly affect the air properties. Only a

few references in the literature regarding natural convection contemplate this aspect [2]; this thesis will

provide one code that considers it and makes it suitable to be applied to the study of a receiver.

1.3 Thesis structure

The thesis will be articulated in five main Chapters. Chapter 1 has been already presented as the

introduction. Chapter 2 will illustrate the principal CSP plant configurations and the state of the art of the

1A mesh is generally fine enough when the solution does not depend on it.
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technology, to understand the main processes that occur in such facilities. As a part of it, an economic

study will delineate the actual and future perspectives of profitability of this type of plant. Chapter 3

will present the equations of mass, momentum and energy in an elaborate way, and how CFD has to

be applied to it. Chapter 4 will show benchmark cases to assess the validity of the developed codes.

Finally, in Chapter 5, a possible application of the codes to the receiver of a CSP plant will be discussed,

and the main conclusions of the work will be drawn.
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Concentrated (or Concentrating) Solar Power is a technology based on electricity generation given

by a thermodynamic cycle of a fluid previously heated by concentrated solar radiation. Despite reaching

a crescent interest only in the last few decades (especially due to the renewable energy shift trend), solar

collector engines are not a new technology: the first working examples date back the year 1864, thanks

to the experiments of August Mouchot, who later built the first engine as a truncated cone reflector [3].

The first solar power plant, built by Shuman in 1912, was kept operative for two years. During the 20th

century, the technology underwent progressive improvements that lead to today’s CSP plants.

2.1 Concentrated Solar Power – Facility Configuration

There exist different configurations of CSP systems, but all of them are characterized by some com-

mon features. The principle of work of CSP is the concentration of solar radiation by means of mirrors

onto a surface, where heat is exchanged with a Heat-Transfer Fluid (HTF), the energy carrier. The

fluid then undergoes a thermodynamic cycle that generates electricity. The characteristic components

of each power plant are called collector and receiver. The collector is a series of mirrored surfaces

pointing the sun, and it reflects the direct radiation on the receiver, a set of components that collect the

radiation. The receiver increases its temperature, and transfers its energy to the HTF. This can happen

directly or indirectly: in the second case, the zone that collects the energy from the receiver is called

primary circuit ; this zone then interacts with the secondary circuit, that consists in an enclosed zone

where the HTF transports the energy. Tanks for energy storage can be adopted to generate electricity

outside the sun-hours and stabilize production in case of variable demand.

The receiver is one of the most important components of any system, because it is where the tech-

nology makes the difference [4]: its elevated complexity, especially in the case of a solar tower system,

can be responsible for a wide-ranging contribution to the global efficiency; if the receiver is well designed,

the latter parameter can increase significantly. As said before, the thermodynamic cycle that follows is

generally well-known, therefore comes with a limited room for improvement. The collector is a critical

component as well, but not as challenging as the receiver due to a much lower complexity.

There are four principal configurations, illustrated in fig. 2.1: Parabolic Trough Collector (PTC), Linear

Fresnel Reflector (LFR), Central Receiver System (CRS) and Parabolic Dish System (PDS). Except for

the PDS technology, all the plants consist in a similar main configuration, apart from the collector-receiver

system that is peculiar for each one of them. In fact, once the HTF has been heated, it undergoes a

Rankine (or Brayton) cycle with appropriate alterations, depending on the technology used. The vapor

expands in a turbine, then it condenses and finally it is pumped again into the heat exchanger. Both

PTC and LFR are linear concentrator systems, i.e. the receiver has a linear-developed shape. CRS and

PDS are, instead, point concentrator systems: solar rays are converged on a single focus point, located
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(a) Parabolic Trough Collector (b) Linear Fresnel Reflector

(c) Central Receiver System (d) Parabolic Dish System

Figure 2.1: Examples of the principal CSP configurations. Figures retrieved from Energy.gov (2013) [5–7].

where the receiver is fixed.

PTCs use a set of parabolic mirrors that focus the sun rays onto their relative receiver tube, as shown

in fig. 2.1(a). The receiver consists in an absorber tube situated in the focal point of the parabola [8].

The mirrors follow the sun motion rotating on a single axis, usually north-south. PTC is the oldest CSP

technology and therefore the most common and proven. It was occupying approximately the 82% of the

global CSP installation in 2016 [9].

LFRs have a configuration similar to PTCs, as it is possible to see in fig. 2.1(b). The collector is made

by several flat mirrors that recreate the geometry of a parabola in different planes: they in fact point rays

to a common focus as the geometrical curve does. A major advantage of LFR over PTC is that the

absorber is fixed and mirrors are flat, both being easier to manufacture and less expensive. A drawback

that mirrors have is that they cannot recreate a perfect parabola, so they concentrate less energy per

unit surface. However, they can be two-axis tracking, leading to an increment to the average radiation

reflected per unit surface [8].

An example of CRS is shown in fig. 2.1(c). The collector of this plant is made of a series of flat

(or slightly-curved) two-axes tracking mirrors called heliostats. Differently from the other configurations

(including PDS), it points to a single receiver located on the top of a tower.
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Parabolic dishes are point concentrators that use a parabolic mirror collector. When placed in series,

they form a PDS, as shown by fig. 2.1(d). The mirror is a 3D paraboloid that focuses solar radiation

onto its receiver, which contains a Stirling engine or a small gas turbine [10]. The receiver is fixed to the

collector and they move in tandem around two axes. Electricity is produced separately in any receiver,

so that the total installed power is the sum of the nominal power of every Engine. In 2013, the only

operative plant was Maricopa Solar Project in Arizona, USA [8] (having started its activity in 2010).

2.2 State of The Art

The principal characteristics of the different plant configurations are resumed in tab. 2.1. CSP plants

Table 2.1: Characteristics of the main CSP configurations (state of the art). The capacity range is relative to a single
turbine. Data extracted from the International Renewable Energy Agency (IRENA) [11] and Xu et al. [9].

Parabolic trough Solar tower Linear Fresnel Dish-Stirling

Maturity of Commercially Commercially Early commericial Demonstration
Technology proven proven projects projects

Capacity range [MW] 10-250 10-130 5-250 0.01-1

Operating 350-400 250-565 250-350 550-750temperature [◦C]

Collector 70-80 >1000 >60 up to 10000concentration [suns]

Global efficiency [η] 0.1-0.16 0.1-0.22 0.8-0.12 0.16-0.29

Receiver/absorber Moving with collector Fixed Fixed Moving with collector

Power cycle Steam Rankine, Steam Rankine Steam Rankine, Stirling Engine,
Organic Rankine Organic Rankine Steam Rankine

Storage with Commercially Commercially Possible, but Probably, but
molten salt available available not proven not proven

Relative cost Low High Low Very high

Outlook for Limited Very significant High (through
improvements Significant mass production)

Advantages Mature technology, High η, Fixed, High η, Modular units,

Modular units Compatible with Low investment Compatible with
Brayton cycle costs Brayton cycle

Disadvantages Relatively low η High O&M costs Relatively low η
No thermal storage
available, low maturity

are characterized by a high level of technology used. On the one side, Rankine (or Brayton, or Stirling)

cycles have been known for more than 100 years, and plants experienced innumerable adjustments in

order to maximize the efficiency. On the other side, the receiver must combine high absorption of solar

power and low heat losses. In conventional fossil-fueled plants, the zone where the highest temperature

is reached is virtually detained from the ambient, because combustion occurs in an enclosed burner

thermally insulated from the environment. In a CSP plant, the heat exchanger cannot be completely

insulated, because it must permit the flux of energy coming from the outside (solar radiation). This is

critical and can be accomplished only by designing the components with a high level of technology.
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The collector can represent a technological challenge as well, especially in the case of a parabolic dish

technology: obtaining a close-to-perfect paraboloid is not an easy task for the manufacturing industry.

2.2.1 Heating fluid

The heating fluid (or the heating fluids, when a secondary circuit is present) has an important impact

on the global efficiency of the plant. The thermodynamic properties of the fluid (conductivity, specific

heat, liquid-steam transition temperature, viscosity . . . ) influence the heat transfer process. Air, for

instance, is low-viscosity (which is an advantage, because the pumping energy needed is low) and cost-

free, but it has low heat exchange rate, since it is a gas; up to 2015, the only plant using it (only as

a primary HTF) was the Jülich Solar Tower in Germany [9]. Up to that date, water was being used

in seven plants, among which world’s largest (377MW), Ivanpah station [12]; its only issues are its

low conductivity and the scarcity in the arid regions where CSP is adopted. The technology used in

steam Rankine cycle is well consolidated, making water HTFs a reliable choice. Thermal oils have

been adopted in a few cases, but they come with many relevant issues such as the high cost and the

limited temperature range in which they can operate (due to thermal degradation) [9]. Salt mixtures are

an interesting alternative to steam/air because they have a much higher heat removal capability than

water [13]. The most investigated molten salts are currently nitrites and nitrates, although many others

have been proved. The temperature range of this HTF can be limited as well, although not as much as

for thermal oils; moreover, it is important to remember that the difference between the maximum and

minimum temperature achieved by the fluid depends on the type of power plant. Linear systems are

only able to reach limited temperatures, that make molten salts a reasonable choice. Price can be as

well a limitation for this technology. Research & Development (R&D) is investigating the use of metal as

HTF, in order to reach higher temperatures than the molten salts limit [14]. Finally, the HTF choice must

consider thermal energy storage, as explained in sec. 2.2.4.

2.2.2 Collector

R&D’s main efforts regarding the collector are focused on the reflectance improvement of the mirrors.

Mirror enhancements decrease the amount of needed reflecting surface. This is crucial, especially in

solar tower systems, where heliostats can represent up to a half of the initial investment [15]. Heliostats

are normally composed of a metal surface covered by a glass layer, sealed together to protect against

moisture and avoid corrosion. Two typical metals used are silver and aluminum; the first has a higher

reflectivity (0.95-0.97) compared to the second (0.88-0.92), but it is more expensive. The coating surface

is normally made of glass because of its inert nature, low cost and physical strength. The combination

of glass and silver gives the mirrors an overall reflectance that is currently of 0.93-0.94. A polymeric
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material is usually applied in order to increase the wind load resistance and avoid deformation. Metal/

glass mirrors are used also in PTC, LFR, and PDS. R&D is struggling to develop coatings made by

polymeric films instead of glass because of their weight and optical properties. Polymers could represent

an interesting alternative of glass especially in PTCs and PDSs, because they can be easily deformed.

Research is struggling to reduce the manufacturing cost of production of the mirrors, especially

the parabolic-shaped. Regarding solar towers, There have been two trends regarding the size of the

heliostats. Some manufacturers started increasing the surface-per-heliostat, in order to reduce com-

ponents, and consequently O&M, and decrease the number of expensive trackers. This has lead to

a surface per heliostat rising from 12m2 in the 1970s up to the current 150 to 200m2 [15]. The other

trend has been the opposite, seeing some manufacturers reducing the area down to 1m2, in order to

exploit the benefits of mass production and simplify the drive mechanisms given minor wind loads on

the mirrors. Smaller heliostats also imply a minor use of land, and therefore fewer energy dispersions

due to the shorter distance from the tower [15]. Regarding parabolic troughs, dishes and linear Fresnel,

the trend is to increase the mirrors’ area, in order to reach higher temperatures.

Dust cleaning is another important process that has to be involved in any type of CSP plant, espe-

cially if located close to sand areas. Dust layers, in fact, decrease the reflectance of the mirrors, and

therefore the energy that impacts on the receiver: efficiency can decrease up to the 70% if the surfaces

are never cleaned throughout a year [9]. This problem is more difficult to treat in arid regions, where

water access is expensive.

2.2.3 Receiver/Absorber

The receiver of a PTC is shown in fig. 2.2(a). The absorber tube consists of a highly-absorbing

(a) Parabolic Trough Collector. Figure retrieved from
Price et al. (2002) [16].

(b) Linear Fresnel Reflector. Figure retrieved
from Wikipedia [17].

Figure 2.2: Heat collection element of a PTC and an LFR.

steel tube surrounded by a selective glass envelope separated by a vacuum (or air) zone [16]. This
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combination of materials with different optical properties is crucial: the outer glass is wavelength selec-

tive, and permits the solar radiation to enter, and be absorbed by the inner tube; at the same time, its

selective nature blocks the thermal radiation of the tube. Moreover, the vacuum blocks the convective

heat transfer between the two surfaces. Coating with a selective surface is usually performed on the

absorbing tube, in order to guarantee the high absorptance of beam solar radiation and low emissivity

at thermal radiation wavelengths. Luz International Ltd developed tubes that tested in 2002 character-

ized by a transmittance of the glass of 0.96, a solar absorptance of 0.95 and a thermal emittance at

300 ◦C of 0.15 [16]. These models are still a reference in PTC, and are being used in the Mojave Desert

plant (operational in December 2014), which is one of the newest and largest PTC facilities in the world

(250MW).

LFR receivers consist of an inverted air cavity having an inner reflective surface that concentrates

the solar radiation onto an absorber plate exchanging heat with ambient insulated tubes, as shown in

fig. 2.2(b). LFR receivers differ for the geometry of the reflective surface (parabolic, trapezoidal, . . . ),

and the number of tubes [18]; the choice depends on the trade-off between cost and efficiency.

There are currently two main types of CRS receivers: tubular and volumetric [19]. In tubular receivers,

the HTF flows inside a set of tubes that are heated by the focused solar radiation. There are two

main types of tubular receivers. In the external cylindrical receiver, shown in fig. 2.3(a), the tubes

(a) External cylindrical receiver (b) Cavity receiver

Figure 2.3: Examples of the principal tubular receivers. In 2.3(a) the absorber surface is the external surface, while
in 2.3(b) it is the internal surface. Figures retrieved from Zhang et al. (2015) [20] and Powerfromthe-
sun.net [21].

are placed onto the inner part of an absorption surface that is exposed to atmosphere. In the cavity

receiver, instead, the tubes are posed inside a cavity, as shown in fig. 2.3(b). Since the hot surface is

10



not in direct contact with outer air, the convective and radiative heat losses are minor than in external

receivers [19, 22]. Tubular receivers reach a thermal efficiency (i.e. the ratio of the energy absorbed

by the HTF to the incoming solar energy) of ηth = 0.8 ÷ 0.9 [4]. R&D is focusing on reducing heat

losses and local stresses on tubes. Also volumetric receivers have two main configurations: the open

volumetric receiver and the closed (or pressurized) volumetric receiver. In the first case, shown in

(a) Open volumetric receiver section (b) Closed or pressurized volumetric receiver section

Figure 2.4: Examples of volumetric receivers. Figures retrieved from Prashant [23] and Muller-Steinhagen (2013)
[24].

fig. 2.4(a), the receiver is divided in primary and secondary circuit. In the primary circuit, ambient air

is sucked (usually thanks to a driving fan) and heated through the porous receiver. Then, an internal

heat exchanger passes the energy of the hot air to another HTF flowing in the secondary circuit. Cooled

air is then expelled. In the second case, shown in fig. 2.4(b), air is mechanically driven by a fan and

follows an enclosed circuit. Hot air can be used directly in a Brayton cycle or cross a heat exchanger,

releasing its energy to another HTF flowing in a secondary circuit. Volumetric heat receivers were

demonstrated to be able to reach a thermal efficiency of ηth = 0.89 with a fluid outlet temperature of

700 ◦C [25]. However, volumetric receivers at such temperatures have been showing failures due to

local overheating. Techniques to provide a more uniform heating are currently being inspected. The

Small Particle Air Receiver, shown in fig. 2.5, is a particular type of volumetric receiver: designed in

the 1970s, it uses a fluid containing micro-particles suspended in air [9]. These micro-particles help air

absorb the sun radiation. Proven in theory a thermal efficiency up to 90% with an air temperature of

700 ◦C, current research is trying to create a physical prototype.

2.2.4 Thermal Energy Storage

Fig. 2.6 shows the two main configurations of a Thermal Energy Storage (TES) system. Energy

storage is said to be direct if the fluid used to store energy is the one used to collect it, and indirect

otherwise. The technology to be adopted depends on the HTF, that in its turn depends on the type of
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Figure 2.5: Section of a small particle air receiver. Figure retrieved from Kitzmiller & Miller (2011) [26].

Figure 2.6: Direct and indirect TES for a CRS plant. Figure retrieved from Stekli, Irwin & Pitchumani (2013) [27].

plant. Indirect TES is less efficient because it implicates more process of energy transfer (and so more

heat losses), but it permits to exploit the advantages of a substance with different properties (and cost)

respect to the fluid undergoing the cycle.

Energy can be stored as sensible heat, latent heat or thermo-chemical heat. The first is based on

internal energy variation due to temperature differences while the second due to phase change; the

third, instead, is based on a thermo-chemical reaction that absorbs (charge) and releases (discharge)

energy.

The main drawbacks of sensible heat storage are that it involves a low energy density and that it

is difficult to release energy at a fixed temperature [28]. Solids as sensible TES have been studied,

principally because of their high conductivity (that accelerates heat transfer), temperature range, and
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low cost. They include concrete, castable ceramics, graphite and silica sand. In case of solid TES,

a configuration different from the two-tanks one can be used. It is called Single-Tank Thermocline

System [29]: as fig. 2.7 shows, the fluid passes through a single tank that is maintained hot at the

top and cold at the bottom. The region having a steep temperature difference is called thermocline

and moves downwards when the tank is charged and upwards when it is discharged. The temperature

Figure 2.7: Example of a Single-Tank Thermocline System including quartzite rock bed. Figure retrieved from
Flueckiger, Iverson, Garimella & Pacheco (2014) [30].

gradient is maintained by the variation of the temperature of the fluid crossing the tank. Liquids, such as

molten salts, are also used as sensible storage. Sometimes they contain encapsulated nanoparticles,

that increase their energy density. One of the best-performing liquid used in TES is the solar salt, giving

its low cost and elevated maximum temperature [31].

Latent energy storage is carried out with the use of Phase Change Materials (PCMs). Its strong ad-

vantage is that the heat exchange temperature is maintained constant during the whole process. Energy

density is higher compared to sensible storage materials, but PCMs have a low thermal conductivity. For

such reason, these materials can be “doped” with graphite or metal alloys, so that their conductivity is

raised.

Thermo-chemical heat storage is based on reversible chemical reactions. Its great advantage is

that the energy density can be up to 10 times larger than in the materials used latent energy storage.

Moreover, the products of the storing reaction are kept at ambient temperature, therefore heat losses

are minimized. However, they are also characterized by a low conductivity. Another drawback is that the

reactions are usually not completely reversible, and their storage capability decreases in time.
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2.3 Economic perspectives of CSP

The electricity market has been rapidly evolving in the last few years, mainly because of three causes:

the significant increase of renewable energy share in the electricity market, the economic growth in

developing countries, and the changes in the price of the energy commodities. The current situation

has been created by the interaction and the balance of these three causes. The Electricity Information

Overview of the International Energy Agency (IEA) shows the current trends in electricity generation [32].

Electricity production in OECD countries substantially halted from the amount it reached a decade ago,

as shown in fig. 2.8. This happened because of the economic crisis that affected nearly any country in

Figure 2.8: Total Electricity Production of OECD and non-OECD countries from 1974 to 2015, International Energy
Agency [32].

the beginning, and because of an increase of the energy efficiency that accelerated with the economic

recovery. On the other hand, electricity production in non-OECD countries kept on rising at a high rate.

Although the electricity production did not vary in OECD countries recently, the energy mix saw

important changes in this period, as fig. 2.9(a) reports. Coal fell sharply, whereas natural gas and non-

(a) OECD countries (b) non-OECD countries

Figure 2.9: World electricity generation mix sources – International Energy agency [32].
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hydro renewables more than doubled their share. The rise of the natural gas use commenced with the

shale gas revolution (principally in the US, the most influential country in OECD) and continued with

the fall of the gas price [33]. This shift towards natural gas was the principal cause of the diminishing

use of coal: once the first became more competitive, the second lost its attractiveness. In non-OECD

countries, however, this shift has not occurred yet, partly because shale-gas extraction needs a high

level of technology and highly-skilled employees.

Renewable energies, instead, improved their share both in OECD and non-OECD countries, due to

technology enhancements and because of more favorable policies. In fact, many governments started

subsidizing clean energy and promoted it directly in order to fulfill international agreements. Although

such policies were mainly issued in developed countries, lately they have started being promulgated in

developing countries as well. At the 2015 United Nations Climate Change Conference in Paris (COP21),

in particular, the majority of the countries signed a deal to advocate clean energy and promise to reduce

carbon emissions (in order to maintain the global temperature increase below 2 ◦C higher than the pre-

industrial levels). This agreement, if respected, is going to push further the adoption of renewable energy

for electricity production. It is important to notice that coal already reached its maximum point also in

non-OECD countries, and before the agreement of Paris.

Future trends of the power sector have been depicted in IEA’s World Energy Outlook (2015) [34],

published before the ratification of the Paris agreement. Looking toward 2040:

• electricity demand and installed power are expected to increase by more than 70% from 2015

levels, mostly because of non-OECD countries, led by China and India.

• coal share will fall by 11%, low-carbon technologies share will rise by 13% due to non-hydro re-

newables. In OECD countries, coal share will halve.

Projections taking the Paris agreement into account, in the same report, expected that electricity gen-

eration from non-hydro renewables will grow globally from the 1316TWh of 2013 to the 10 980TWh of

2040.1 The report shows the growth potential of the various renewables consequent to the Paris agree-

ment. Data have been extracted and plotted to be visualized in fig. 2.10. CSP is the technology that is

going to have the largest increase proportioned to the current exploitation: the electricity it will generate

is expected to be about 200 times higher than nowadays, an average growth of 21% of the provided en-

ergy. The largest absolute increase will be instead seen by wind energy, with a production rising about

1These projections did not consider the withdrawal of the United States from the agreement under the Trump administration.
However, it is still difficult to assess the impact of this decision, because:

• it is not expected to be integrally rejected, but only renegotiated (as many Republicans expressed this will)
• it will not take effect until the next five years, which include another round of general elections
• it will not ban the US from promoting green policies, but just free them from the pledge they had signed
• the United States is just a single country among 160 that have signed the agreement

Many columnists think that the resignation will eventually have only little impact [35], [36]. Renewables are therefore set to
represent a major player in electricity generation in the next decades, both in developed and developing countries.
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(a) 2013 data (b) 2025 forecast (c) 2040 forecast

Figure 2.10: World present consumption and forecast of electricity generated by renewable sources. Data shown
in tab 2.2. – World Energy Outlook, International Energy Agency (2015) [34].

Table 2.2: World renewable consumption scenario – International Energy Agency.

2013 2025 2040

Bioenergy 464 973 2077
Hydropower 3789 5083 6836

Wind 635 2344 5101
Geothermal 72 197 541

Solar PV 139 862 2232
CSP 5 83 937

Marine 1 7 93

Electricity generation [TWh] 5105 9549 17 817

4500TWh. Solar PV will surpass bioenergy, and hydropower will lose its dominant nature (although it

will continue to have the largest share). In any case, by 2040 the electricity mix is set to become more

plural, having different technologies coexisting. CSP seems to have the highest potential in terms of

growth. The next paragraph will try to assess it focusing on this particular technology and evaluating its

advantages in comparison to the others.

2.3.1 CSP future trends

CSP operating plants are shown in fig. 2.11. The majority of the installed power is located in Spain

and United States, that represent together almost half of the global market. It can be noticed that neither

of the countries is building or developing new plants. This is a consequence of the energy policies of

the two countries. The United States concluded its Investment Tax Credit (ITC), a tax credit of 30% on

renewable energies, and new projects halted in 2014. Spain, on the other side, retroactively reduced

its Favorable Feed-in Tariff (FIT) on solar technologies, not only damaging current businesses, but also

increasing regulatory uncertainty and the risk of investment. The result is that no added capacity is

being planned in these two countries [38].

In addition to the incentives, one of the reasons why Spain and the US are the countries that have

more installed power is that, among the developed countries, they have one of the highest Direct Normal

Irradiance (DNI), as shown in the in fig. 2.12. DNI is an indirect indicator of the global potential for CSP.
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Figure 2.11: CSP projects: installed, under construction and under development total nominal power. Figure re-
trieved from HELIOSCSP [37].

The irradiation in the two countries is among the highest, especially among the developed countries.

Therefore, Spain and United States started investing in R&D creating a business that is becoming more

and more profitable also in countries under development. Now that the technology is becoming more

mature, countries such as Chile, South Africa and China started investing relevantly on the technology,

according to fig. 2.11. DNI is high also in many other regions in the world, as Australia, Mexico, Ar-

Figure 2.12: Global Direct Normal Irradiation – DNI Solar Map © 2016 Solargis [39].

gentina, North Africa and The Middle East, where the possibility of growth of CSP there is high. The

reason why the investment in Australia is still low in this technology despite being a developed country

and despite its potential is a consequence of the regulatory structure for the development of renewables

in the country. In fact, both at a local and at a federal level, Australia’s delays in project approvals, frag-
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mented regulation, insufficient incentives and continuous legislative redefinitions have posed significant

barriers to clean electricity generation [40]. As a result, the exploitation of solar resources accounted

only for a 3% of the energy generation in 2016 [41]. With a change in the country legislation toward

renewable electricity production, CSP installed power could eventually start growing. The other coun-

tries that have a large DNI are still under development, but could already enter the CSP market following

China, Chile and South Africa, now that the technology is becoming more and more profitable.

It must be said, however, that the countries that have the highest level of irradiance are also the ones

where the use of photovoltaic energy is the most performing. The great advantage of solar PV over

Concentrating Solar Power is that the former has undergone a huge cost reduction since it has been

commercialized. According to the Economist, the price of crystalline silicon photovoltaic cells reduced

100 times from 76.67 $/W in 1977 to 0.74 $/W in 2013 [42]; currently, the price is about 0.22 $/W [43] for

polycrystalline cells. The huge price reduction was the eventual consequence of a large investment in

R&D, due to the interest of companies attracted by the versatility of photovoltaic panels in comparison

to the traditional energy system. Not being able to be commercialized as widely as PV systems, CSP

projects gathered a minor interest, and their price did not reduce likewise. Levelized Cost Of Electricity

(LCOE) is an important indicator to assess the profitability of electricity technologies and can be used to

compare solar PV with Concentrating Solar Power. It represents the cost per energy actualized to the

time of the initial investment.

LCOE =
sum of the costs over lifetime

sum of electrical energy produced over lifetime

In 2016 Lazard made an interesting estimation of the unsubsidized LCOE in the United States, a refer-

ence country regarding R&D advancement [44]. The results have been reported in fig. 2.13. Regarding

Figure 2.13: Unsubsidized LCOE ($/MWh) for the principal electricity sources. Data retrieved from Lazard (2016)
[44].
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CSP, the central receiver plant is considered, since it is nowadays the most profitable amongst the four

technologies. The convenience in the price of photovoltaic energy (at utility scale) over CRS is unques-

tionable: the worst plant’s LCOE is still half of the best CSP plant. CSP’s costs are also higher than the

majority of the other technologies. This makes clear that, at least nowadays, CSP cannot compete with

them. However, solar thermal energy is not excessively more expensive than coal and nuclear energy.

As Lazard points out, if coupled with an 18h thermal storage CSP can reach a LCOE 119 $/MWh that

is competitive with some nuclear and coal facilities. If Concentrating Solar Power succeeds in becoming

more and more inexpensive, it will be likely to reach a significantly larger market share, in line with the

World Energy Outlook predictions. There are several reasons why we should expect that this eventually

happens. The SunShot Initiative is a national program launched in 2012 by the U.S. Department of En-

ergy in charge of outlining solar energy goals and track them. In 2016 they assessed that the 2020 goal

of LCOE reduction that they had previously fixed was achieved at a 70% extent [38], and confirmed that

the results were in line with the predictions. According to the study, the main technology improvements

that could drive the costs downwards are:

• The achievement of high temperatures as a consequence of the improvement of the receiver tech-

nology. High temperatures would permit the exploitation of supercritical cycles (as air in a Brayton

or Combined Cycle Gas Turbine (CCGT) cycle), resulting in a sharp enhancement of the cycle

efficiency.

• Higher temperatures could be reached also using solar-selective coating, having a high absorp-

tance but low emittance at thermal frequencies and vice versa at solar spectrum frequencies.

• The use of technological equipment to align accurately the heliostats and improve the focusing.

• The progress in Thermochemical Energy Storage and Latent Energy Storage, in the form of an

increased efficiency and a cheaper manufacturing.

• A larger market, involving a larger economy of scale.

• Larger plants, resulting in a lower O&M.

In parallel with this betterments, it is crucial for CSP to increase its annual performance improving the

dispatchability. In fact, the main costs of such a plant are the investment costs: with a more intense

use, these costs would be amortized over a larger energy production; in such a way, the LCOE would

decrease notably. This is the reason why TES is so important that it is always taken for granted to be a

part of the future technologies. Although Sunshot defines the 2020 objectives both for PTCs and CRSs,

it recognizes a 15% lower LCOE in the solar tower. The latter, according to the report, should reach a

value of 59 $/MWh. At such levels, it would be competitive with the all the current technologies showed

previously at fig. 2.13. This is a proof of what was before mentioned: with a successful technology

development, CSP could become competitive with the other power technologies.
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In any case, solar thermal energy should not only be compared to the others by the point of view of

the cost. Renewables are characterized by many differences in the way they produce energy. Factors

as predictability, reliability, and adaptability to the demand play a crucial rule and differentiate them from

each other. One great advantage of Concentrating Solar Power, differently from photovoltaic and wind

technologies, is that it is dispatchable. This means that electricity can be provided depending on the

demand, and not only when the conditions are favorable. Wind availability can vary a lot depending on

the weather conditions, and at a certain rate also solar PV production is susceptible to the atmospheric

conditions. Whenever the direct radiation on the panels is reduced (e.g. when a cloud interposes

between the modules and the sun), the power output of the plant decreases, causing a brusque reduction

of the electricity sent to the grid. In a CSP plant with TES this does not happen. The reliability of

electricity production is a value that the energy market recognizes, since stabilization of the grid has a

cost. Moreover, CSP electricity generation is able to ramp quickly, and can help to maintain the grid

stability when needed.

Even though solar thermal plants are more costly than PV, the thermal storage gives them a useful

asset: the possibility of accumulating energy during the day and selling it in the late afternoon. From

the economical point of view this is a great advantage, since in those hours the price is the highest of

the whole day. At that time, the use of fossil fuel plants is high. Whenever solar thermal electricity is

generated in that period, the carbon emissions are drastically cut. Therefore, CSP could represent an

asset to reduce CO2 emissions (and help the country respect the clean energy agreements, perhaps

avoiding possible economic sanctions).

It is possible to conclude, then, that although CSP is not currently competitive with fossil fuels or

renewable power plants without economic incentives, it could become an important asset in a short

future. Investing in R&D could provide technological ameliorations to the plant and make it preferable

to others, and this is the reason why it is forecast to expand considerably. Although many research

programs finance study on the four plant configurations, the CRS currently represent the most promising

technology.

Its adoption as a part of the electricity generation mix of a country could improve its renewable energy

share, following the clean transition that they prearranged for themselves. The countries that would gain

more from this technologies are the ones that lie on the regions with the highest DNI; most of the times,

they are the same that are rapidly developing now, and that will be responsible for the largest increment

of the world electricity generation.
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2.4 Central Receiver Plant – Background

Every day, a huge amount of solar energy hits the Earth. In the aridest regions of Chile close to the

equator, the energy of the sun rays that hits the Earth’s surface in one year can be 2.5 times larger than

the average amount of energy that hits an equal area in Europe. In all the solar power technologies

this energy is captured and converted to electricity. However, both in solar PV and CSP during the

conversion process a certain amount of energy is lost and released to the ambient. In particular, in CSP

plants the energy is first reflected, then pointed to a region where it is passed to a fluid, subsequently

extracted from the fluid by a turbine and finally it is transformed to electricity in an AC generator.

This section will provide an overview of the processes that are involved in a Central Receiver System

from the incidence on the collector to the absorption in the receiver. This will permit to understand the

first energy-transfer processes that take place in a CSP plant, and give a background analysis to perform

further calculations at a later stage.

2.4.1 Solar Radiation

The Sun is a giant mass that releases a huge amount of energy every instant. Its effective blackbody

temperature is 5777K, and it is defined as the temperature that would have a blackbody if it radiated the

same amount of energy. Solar radiation is released homogeneously to any direction. Solar energy is

conserved, but the more it travels away from the Sun, the more it distributes to a larger area. For this

reason, the energy approaching the Earth is not constant; in fact the distance between the Sun and the

Earth depending on the moment during the year. The mean Earth-Sun distance is called astronomical

unit, and it measures around 1.5× 1011 m. When the Earth is located at such distance, the solar energy

per unit time on a unit surface normal to the sun rays outside the Earth’s atmosphere is called solar

constant Gsc = 1367W/m2. The solar power outside Earth’s atmosphere is referred as extraterrestrial

radiation Gon [45].

On the path to reach the terrestrial surface, this energy is partly reflected, partly scattered and partly

absorbed by the atmosphere. In fact, the substances that constitute its various layers are not perfectly

transparent and interact with the solar radiation. Fig. 2.14(a) shows the effect of the atmosphere on

the sun rays. The smaller area defined by the green line represents the total amount of solar radiation

that arrives at the Earth surface. Once it has crossed the atmosphere, solar radiation is made by

two main components: direct (or beam) radiation and diffuse radiation. The former is the amount of

radiation that directly travels from the sun to earth without having any interaction, thus maintaining its

direction. The latter is the amount of solar radiation that has been scattered from particles in the air

and therefore deviated from its original direction. The ratio of direct to diffuse radiation is not fixed, and

depends strongly on the weather, as well as other air conditions (such as pollution, that has an important
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(a) Solar radiation (b) Earth thermal radiation

Figure 2.14: Solar and Earth radiation spectra and comparison with a black body having the same global radiation.
Figure retrieved from Hansen [46].

influence). In sunny days the direct radiation is far greater than the diffuse, while in cloudy days diffuse

can become virtually the only component.

CRS plants (and in general all CSP plants) can only concentrate direct radiation, since the random

direction of diffuse radiation does not permit it to be pointed to the receiver. This is the reason why such

plants must operate on arid regions, where the amount of cloudy days is the lowest. In such days, the

plants cannot be operative unless they had previously stored heat. The direct normal radiation intensity

on a clear-sky day (which is the typical operative condition for a CSP plant) depends on extraterrestrial

radiation, sun coordinates and climatic conditions, depending on the model used: in Appendix A the

Hottel model is shown [45]. The time integration of the direct normal radiation gives the DNI.

2.4.2 Solar radiation losses

In order to calculate a CSP plant efficiency, it is important to define an incoming thermal power. In

such plants, the direct normal radiation is selected. A significant amount of solar radiation is lost before

being absorbed by the HTF. The main energy losses are:

cosine effect losses due to the relative inclination of the mirror respect to the sun;

heliostat absorption losses due to the limited reflectivity of the mirror;

atmospheric attenuation losses due to the interaction with air after the reflection;

shading/blocking losses due to the effect of shading or blocking of a mirror to another;

spillage losses due to the imperfect pointing on the receiver surface;

receiver reflection losses due to the limited absorptance of the receiver;
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conduction losses due to heat conduction towards other elements of the tower from the receiver;

convection losses due to natural or forced air convection on the receiver;

radiation losses due to thermal radiation of the receiver.

Figure 2.15: Principal losses of solar power from the incidence on the heliostats to the absorption by the HTF and
relative thermal power balance. Figure edited from Lata, Rodrı́guez & de Lara (2008) [47].

The useful heat is the difference between the incoming heat and the sum of the losses, as shown in

fig. 2.15. These losses can be separated in two main groups: the ones due to cosine effect, heliostat

absorption, atmospheric attenuation, shading & blocking and spillage can be associated to the collector,

while the ones due to receiver reflection, conduction, convection and radiation can be related to the

receiver. By separating these two groups, it is also possible to define two relative efficiencies: the

efficiency related to the collector, known as the optical efficiency ηopt, and the efficiency related to the

receiver, known as the thermal efficiency ηth.

2.4.2.A Collector losses

All the collector losses are radiation losses, in the sense that a portion of solar radiation loses its path

to the receiver. The model used to calculate the losses due to atmospheric attenuation is taken by the

publication Cardemil, Starke, Scariot, Grams & Colle (2014) [48]. The model used to calculate spillage

losses is extracted from the work of Schmitz, Schwarzbözl, Buck & Pitz-Paal (2006) [49].

The first loss that occurs is due to the cosine effect, graphically explained in fig. 2.16. The angle

of incidence θ represents the angle between the sunbeams and the direction normal to the surface.

The effective area of the solar radiation is the one perpendicular to the sun rays direction; in fact, if

the heliostat is not oriented towards the sun, the same amount of energy is distributed on a larger

area. Although heliostats A and B are the same, their effective area is different, as shown in the figure.
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Figure 2.16: Dependence of the effective area on the angle of incidence between the sun and the heliostats (cosine
effect). Figure edited from Powerfromthesun.net [21].

Therefore, the projection of the area makes the effective solar radiation equal to

Gbt = Gbn cos θ (2.1)

where Gbn is the beam normal radiation and Gbt is the beam radiation on the tilted surface. The calcu-

lation of Gbn from Gon is explained in appendix A. To determine the orientation of the mirror, it must be

Figure 2.17: Heliostat orientation respect to the sun and the receiver location. Figure edited from Reznik (2009)
[50].

imposed that normal of the heliostat surface is the bisector of the vectors pointing to the receiver and to

the sun from the heliostat center. Given the vector pointing to the sun from the mirror ns and the mirror

normal to the surface nc, it is easy to note that

ns · nc = cos θ = ηcos (2.2)
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The cosine efficiency ηcos can be defined to factor in the cosine effect losses.

Once the radiation hits the heliostat it is largely reflected, but a part is absorbed by the mirror. The

reflectivity loss in CSP plants has been described in sec. 2.2.2; typical values of reflectivity ρh are

about 0.93-0.94 for clean mirrors. The efficiency ηref related to the reflectivity losses is

ηref = ρh (2.3)

Part of the solar radiation can be blocked. Relatively to a specific mirror, if solar beams are obstructed

before hitting it the phenomenon is called shading, whereas if it occurs afterward it is named blocking.

Fig. 2.18 provides a graphical explanation. Projecting the area of a mirror along the beam direction

Figure 2.18: Blocking and shading effects on the useful surface. Figure retrieved from Montes, Rubbia, Abbas &
Martı́nez-Val (2014) [51].

and along the receiver direction, it is possible to compute respectively the shaded and the blocked area

relative to that mirror. A blocking and shading efficiency ηbs can be defined as

ηbs = 1− blocked and shaded surface
total surface

(2.4)

Although it is possible to distinguish the effects of blocking and shading to a single mirror, eq. 2.4 refers

to the total area of the system of heliostats. Shading and blocking can be predicted knowing the sun

coordinates, the heliostats field and the tower disposition, and the dimensions of the mirrors.

On the path to the receiver, sunbeams are affected by atmosphere attenuation. There are several

models that attempt to describe it. The one presented below is the Pitman and Vant-Hull transmittance
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model. The following equations are needed to calculate the atmosphere transmittance τatm:

τatm = e−ξ R
S

(2.5a)

ξ = C e−AHT (2.5b)

1− S = S0 (β + 0.0091)
−1/2 (2.5c)

β = 3.912/VR (2.5d)

C = C0 (β − 0.0037)
S (2.5e)

A = A0 ln ((β + 0.0003 ρw) /0.00455) (2.5f)

C0 = 0.0105 ρw + 0.724 (2.5g)

S0 = 0.00101 ρw + 0.0507 (2.5h)

A0 = 0.0112Hs + 0.0822 (2.5i)

where ξ is the broadband extinction coefficient averaged over all wavelengths of the solar spectrum, R

is the slant range (the distance between the heliostat and the focal point), Hs is the site elevation, ρw is

the vapor concentration of air, VR is the visibility range, β is the scattering coefficient, HT is the tower

focal height and A0, C0 and S0 are altitude and water vapor-dependent proportionality constants. An

atmospheric attenuation efficiency ηatm can be defined, equal to the air transmittance.

The last energy loss phenomenon involved between collector and receiver is the spillage. The solar

radiation focused onto the receiver undergoes a little dispersion due to the imperfect calibration of the

beam reflected direction. The dispersion is assumed to be probabilistic and aleatory, therefore it is

distributed as a Gaussian function. The function standard deviation can be assumed to be

σtot =

√
σ2
sun + σ2

s + (2σt)
2 (2.6)

where σsun is the the sunshape error (that can be taken as 2.09mrad independently of the DNI), σs is

the surface error and σt is the tracking error. The spillage efficiency ηspil can be defined as

ηspil =
1

2π · σ2
tot

∫
x

∫
y

e
− x

2+y2

2 σ2tot dy dx (2.7)

and represents the portion of the 3D curve that is located inside the receiver area. Spillage losses are

defined globally for the whole system.

The combined effect of all the solar radiation losses makes it possible to define the optical efficiency.2

ηopt = ηcos ηref ηbs ηatm ηspil (2.8)
2In eq. 2.8, ηcos and ηatm are the global cosine effect efficiency and the global atmospheric attenuation efficiency, that factor

in every heliostat of the field.
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2.4.2.B Receiver losses

After losing part of its intensity, the total solar radiation reaches the receiver. The total heat incident

on the receiver is referred as Q̇in. The thermal efficiency of the receiver ηth is defined as

ηth =
Q̇in − Q̇lost

Q̇in
=
Q̇in − Q̇ref − Q̇cond − Q̇conv − Q̇rad

Q̇in
(2.9)

The first radiation loss after the sun rays hit the receiver is the absorption loss, due to the partial

reflection of the receiver. The total amount of reflected radiation is the sum of the radiation that is

reflected at any point of the receiver (inside or on the external surface) and that is eventually expelled.

The rest of the energy gets trapped, and it is then absorbed. The absorptance of the receiver αr can

be defined as the fraction of the absorbed radiation over the total radiation, while the reflectivity ρr is

the ratio of the reflected radiation to the total radiation. Consequently, the total heat absorbed by the

receiver is

Q̇rec = αr Q̇in = (1− ρr) Q̇in = Q̇in − Q̇ref (2.10)

Part of the absorbed energy contributes to heat up the receiver solid components; the receiver trans-

fer heat to the other solid parts of the tower through heat conduction. This amount of energy is not

passed to the HTF, thus it gets lost. The amount of energy that gets lost for conduction is significantly

lower compared to the other losses, so it can be neglected [47].

The high temperature of the receiver causes energy losses by convection. Heat convection depends

on the temperature of the receiver Tr, the ambient temperature Tamb and the heat transfer coefficient h.

Q̇conv = h (Tr − Tamb) Ar (2.11)

A convection losses model to evaluate the heat transfer coefficient in CRS receivers was developed by

Siebers & Kraabel (1984) [52]. The model has two main assumptions: the temperature of the receiver

and the convective heat transfer coefficient h̄ are considered to be constant and equal to the average

value around the receiver surface. These assumptions do not verify in reality, because the receiver is

characterized by steep temperature gradients, both along its surface and along the outer layer of air.

However, this simplified model can be used to supply a first quantitative description of the convective

losses. The formulas shown below are referred to a cylindrical external-type receiver. Thermal con-

vection between the receiver and the ambient can occur in as different forms: forced convection and

natural convection. The first occurs when the wind is blowing onto the receiver, transporting the heat

through the air; the second occurs in no-wind conditions, when the air motion is caused by the buoyancy

forces created by its thermal gradient. In a more general case, the heat transfer coefficient depends

on the combination of these two phenomena. This model combines the heat transfer coefficient due to
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forced convection h̄f and the heat transfer coefficient due to natural convection h̄n.

h̄ =
(
h̄3.2
f + h̄3.2

n

)1/3.2 (2.12)

To calculate the first of the two terms, a correlation of forced convection of a cross-flow on a cylinder

with pyramidal shaped roughness elements (that recreate the tubes of the receiver cylinder) is used.

The Nusselt number related to this configuration depends on the surface roughness ks/D; the equation

presented belows refers to the case ks = 200 · 10−5.

ReD ≤ 4.1 · 105 NuD = 0.3 + 0.488Re0.5
D

(
1 + (ReD/282000)

0.625
)0.8

4.1 · 105 < ReD ≤ 1.2 · 106 NuD = 8.64 · 10−3Re0.81
D (2.13)

ReD > 1.2 · 106 NuD = 0.0455Re0.81
D

D represents the outer diameter of the cylindrical receiver, while ks is the the effective sand grain rough-

ness height, approximately equal to the tubes radius. The Nusselt number NuD and the Reynolds

number ReD are defined as function of the air conductivity k, density ρ, velocity u and viscosity µ:

NuD =
hD

k
ReD =

ρ uD

µ
(2.14)

After obtaining the Nusselt number, the heat transfer coefficient hf can be obtained by eq. 2.14. To apply

the model, also the wind velocity u must be considered constant – as well as the air thermophysical

properties. Regarding natural convection, the Nusselt number for a totally turbulent flow is shown below

as a function of the Grashof number GrH calculated respect to the height H of the receiver.

NuH = 0.098Gr
1/3
H

Tr
Tamb

−0.14

GrH =
ρ2 g β (Tr − Tamb) H3

µ2
(2.15)

β is air coefficient of thermal expansion and g is the gravity constant. As in forced convection, the heat

transfer coefficient hn can be obtained by inverting eq. 2.14. The air properties for natural and forced

convection are calculated at the film temperature, defined as Tfilm = (Tr + Tamb) /2.

Apart from convective losses, the receiver releases part of its energy as thermal radiation. To

estimate it, the receiver is assumed to be a diffuse surface and the ambient a black body.3 The radiation

emitted by a body is expressed as a function of the receiver emissivity εr, the Boltzmann constant

σ = 5.67 · 10−8W/m2K4, the average sky-ground temperature Tsg and the view factor from the receiver

to the surroundings Fview. However, since ambient is considered as a black body, Fview = 1.

Q̇rad = εr σ
(
T 4
r − T 4

sg

)
���:

1
Fview Ar = εr σ

(
T 4
r − T 4

sg

)
Ar (2.16)

3The sky-ground system can be thought as a cavity in which the receiver is located.
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The sky-ground temperature is a fictitious temperature that makes it possible to factor in the radiation

of the sky and the ground toward the receiver. Eq. 2.17 of the thermal efficiency can be expressed

explicitly:

ηth =
Q̇in − Q̇lost

Q̇in
= αr −

εr σ
(
T 4
r − T 4

sg

)
Ar + h (Tr − Tamb) Ar
Q̇in

(2.17)

It is finally possible to express all the losses from the direct solar radiation on the mirrors to the HTF

fluid. All the radiation incident on the receiver that is not lost in any process is absorbed by the HTF, as

the total balance of energy suggests. This useful energy can be expressed as Q̇u = ηth Q̇in, where Q̇in

is a function of the direct normal radiation, the optical efficiency and the concentration ratio Cr = Ac/Ar

(where Ac is the collector area and Ar is the receiver area).

Q̇in = Gbn Cr Ar ηopt (2.18)

Eq. 2.17 can be re-formulated as

ηth = αr −
εr σ

(
T 4
r − T 4

sg

)
+ h (Tr − Tamb)

Gbn Cr ηopt
(2.19)

Finally, the absorbed useful heat Q̇u can be expressed as a function of the direct solar radiation:

Q̇u = Gbn Cr Ar ηopt ηth (2.20)

2.4.3 Performance analysis

Sec. 2.4.2.A and sec. 2.4.2.B provided a useful description to calculate the efficiency of the heliostat

field and the receiver. In this section the equations presented will be applied to a hypothetical case to

understand the impact of the single losses on the overall efficiency. Later on, a sensitivity analysis of

many variables that influence them will be performed. The independent variables that will be considered

are shown in tab. 2.3. During this analysis, some of them will be changed within a range, while all

the others will be kept constant. This will help to understand the importance of that specific variable

on the final heat loss balance. It is important to specify that the sensitivity analysis does not want to

describe the impact of the variation of the parameters relative to an existing case, but only to estimate

the effect of these parameters. This means that a change in a variable will not correspond to a different

configuration of the plant, but instead to a fictitious case characterized by the new variable. For example,

it is impossible to change the receiver emissivity without modifying the material used to make it; however,

there could be a fictitious plant having a different receiver characterized by the requested emissivity. In

this way, the goal of the study will be preserved: the assessment of the heat losses impact due to the

change of the variables. The sensitivity analysis will not be made on all the variables, though, but just
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on the non-trivial (i.e. the ones that do not have a direct proportionality with the overall efficiency) and

most significant ones.

The base case is the Solar Two Project located in the Mojave desert; the system data are collected

from the plant evaluation test report given by Pacheco et al. (2002) [53]. Weather data refer to the

sample day of 27 July 2017 at 16:00 solar time, recorded in the closest meteorological station situated

at the Barstow airport (34°51′13′′N 116°47′12′′W ) [54]. Tab. 2.3 shows the value of the parameters taken

in the base case, and their range used in the sensitivity analysis.

Table 2.3: Performance parameters of the analysis of a sample CRS plant.

Parameter Base case Sensitivity analysis range Parameter Base case Sensitivity analysis range

Gbn [kW/m2] 750 Tr [◦] 774 290÷ 1200
θ[◦] 30 0÷ 90 Tamb [◦] 42 5÷ 45
ρh 0.91 Ar [m2] 99.3
ηbs 0.93 ks [cm] 2.1

Hs [m] 588 D [m] 5.1
ρw [%] 12 0÷ 65 u [km/h] 10 0÷ 60
VR [km] 16 5÷ 16 H [m] 6.2
HT [m] 76.2 εr 0.85 0.5÷ 1
R [m] 126 86÷ 407 Fview 1
ηspil 0.99 Ac [m2] 10 260
αr 0.94

Solar direct normal radiation is calculated using the Hottel model explained in Appendix A. The angle

of incidence is taken between the minimum and maximum possible angle of a heliostat. It is assumed

that θ corresponds to the average angle of incidence of the whole system of heliostats. Although it is

impossible that the average angle takes the extreme values of the sensitivity range, it can happen that

a single heliostat is oriented to have such angles. Since the goal of the analysis is to understand the

effect of the angle of incidence in all its possible configurations, these extreme values are considered.

The collector reflectivity is calculated averaging the reflectivity of the two different types of heliostats

described in the report. The blocking/shading efficiency and the spillage efficiency, instead, are not

cited; therefore, the PS10 plant is taken as reference [55], since it has a similar configuration. The site

elevation, the vapor concentration, the visibility range, the ambient temperature and the wind velocity

are extracted from the weather station. Their sensitivity range is the guessed one for locations where a

CRS could operate. The tower height, the slant range, the receiver absorptance, the receiver area, the

tube radius, the receiver diameter and the receiver height are given in the report. The receiver average

temperature is extracted from the computational study made by Christian & Clifford (2012) [56] regarding

the real plant. During the sensitivity analysis, the minimum temperature considered is the minimum

receiver temperature to start the production, while the maximum one is a hypothetical temperature of a

highly-efficient CRS plant receiver, that could be made available in a future perspective. A temperature of

1200 ◦C would not be borne by solar salts, thus the fluid involved must be a different one (such as a liquid

metal). The receiver emissivity is not given in the report, therefore a typical value for a solar receiver
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is considered [22]. The sky-ground temperature is assumed to be equal to the ambient temperature.

Finally, the air thermophysical properties are found using a correlation of the temperature [57].

The base case results are presented in tab 2.4. With this configuration, the most impacting loss is

Table 2.4: Base case results – efficiency and heat balance.

Efficiency [%] Heat [MW]

ηcos 86.6 Q̇sol 61.05

ηref 90.8 Q̇in 44.18

ηbs 93.0 Q̇r, ref 0.52

ηatm 99.3 Q̇conv 0.20

ηspil 99.0 Q̇rad 1.67

ηopt 72.4 Q̇u 41.79
ηth 94.6

ηoverall 68.5

the cosine effect loss. Atmospheric attenuation, instead, hardly has an influence. The overall efficiency

is 68.5%: of the 61.05MW of solar power 41.79MW are absorbed by the HTF.4 The sensitivity analysis

assesses the losses dependence on the presented variables. The variation of the heat losses as a

function of the variables are plotted (fig. 2.19- 2.23) in a normalized form, in which the base case value

is equal to one in the y-axis. The results related to the variation of humidity, visibility and slant range

produced almost no effect on the overall efficiency. This indicates that in clear days the air transmittance

does not waver significantly. Moreover, the variation of the slant range is too small related to the one

needed to have an impact on the air transmittance. The angle of incidence, instead, shows a relevant

impact on the useful heat (linearly proportional to the overall efficiency), according to fig. 2.19. The

Figure 2.19: Useful heat Q̇u as a function of the angle of incidence θ.

useful heat is maximum when the heliostats are perpendicular to the sun, then the curve decreases as

a cosine function until it reaches a theoretical value of Q̇u = 0MW for θ ≈ 88°. The curve shows that

it is crucial to keep the angle as close as possible to the sun ray direction: for θ > 88° the efficiency

starts falling sharply. Plants try to maximize the cosine efficiency in the design of the heliostat system.

At low latitudes the zenith angle of the sun is high, so the heliostats are placed around the tower, to
4The overall efficiency is defined, for simplicity, as the ratio of the HTF absorbed heat to the solar power due to direct radiation.

It is equal to the product of the optical and thermal efficiency.
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be maintained almost vertical. At higher latitudes, the tower position shifts to the south, so that the

mirrors can point to the sun more efficiently [58]. The receiver temperature has a significant impact

on the overall efficiency too. The useful heat decreases with the fourth power of Tr, complementary

(a) Useful heat Q̇u as a function of the receiver
temperature

(b) Power output Pel for a hypothetical Carnot cy-
cle given an incoming heat Q̇u as in fig. 2.20(a)

Figure 2.20: Sensitivity analysis on the temperature of the receiver Tr.

to the losses for radiation. Although radiative losses are rather higher than convective losses, in the

base case they still have a limited impact on the overall efficiency; this can be seen comparing the

thermal and the optical efficiency in tab. 2.4. However, the receiver temperature is expected to play an

increasingly significant role in a future perspective, when it will reach higher values. The reason why

a higher temperature is sought, although it means higher thermal losses, is explained by fig. 2.20(b).

The figure shows the electrical power of a hypothetical Carnot cycle coupled to the system that is being

analyzed: since the efficiency of the cycle rises if the maximum temperature of the fluid increases,

the combined efficiency of the collector/receiver and the cycle can be higher if Tr increases. After

a certain value, though, radiative losses become major than the gain in the cycle efficiency, and the

power output starts decreasing. Carnot cycles are not feasible practically, but they are a simplified (but

consistent) model to represent the plant’s cycle efficiency as a function of the maximum temperature

reached. Also the ambient temperature influences the receiver losses. This parameter affects both the

convective and the radiative losses but hardly has an effect, as shown in fig. 2.21. Convective heat

Figure 2.21: Useful heat Q̇u as a function of the ambient temperature Tamb.
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transfer starts to become relevant as the wind velocity increases. Fig. 2.22(a) shows that the useful heat

decreases with the wind velocity. In particular, is it possible to spot a change in the curve declination:

(a) Useful heat Q̇u as a function of the wind veloc-
ity

(b) Comparison between convective and Radiative
losses as a function of the wind velocity

Figure 2.22: Sensitivity analysis on the wind velocity u.

between 10 km/h and 15 km/h the effect of the roughness starts to influence forced convection.5 This

phenomenon contributes to raise the heat transfer coefficient and make forced convection dominant

over natural convection. In a case of harsh winds (around 45 km/h), convection losses can become even

higher than radiative losses. If these losses did not appear too relevant for the base case, the sensitivity

analysis shows that they become it as the wind rises. The last parameter studied in the analysis is the

receiver emissivity. The thermal efficiency decreases linearly with εr, as shown in fig. 2.23(a). Emissivity

(a) Useful heat Q̇u variation for a constant absorp-
tance of the receiver αr

(b) Useful heat Q̇u variation for an absorptance of
the receiver αr equal to its emissivity εr

Figure 2.23: Sensitivity analysis on the receiver emissivity εr.

has a reasonable impact on radiative losses, so it should be kept low. Since emissivity and absorptance

are usually linked for gray bodies, an additional analysis has been made, in which εr = αr, illustrated

in fig 2.23(b). The dependence of the two optical properties shows that εr = αr must be maximized

to obtain the maximum useful heat. This leads to the conclusion that, although a low emissivity is

5In this range, however, the results are weaker. The transition zone is usually difficult to predict, especially with correlations,
due to its unstable nature.
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preferable, in the design of the receiver the absorptance must always have the priority. Gathering the

information obtained in the analysis, it is now possible to draw some general considerations.

• Cosine losses have a great impact and are the first parameter to take into account in the design of

the field, depending on its location, resulting in a precise heliostat field disposition.

• The receiver temperature is another important parameter for the correct design of the plant. Theo-

retically, if the HTF properties permit it, it should be raised until the radiative losses become more

relevant than the thermodynamic cycle efficiency. The optimum temperature can be raised if the

emissivity of the receiver is lowered. However, the latter parameter should not involve a lower

absorptance of the receiver, which is crucial to maintain the thermal efficiency high. Selective ma-

terials can be used to achieve these results. Their ability to block a specific range of wavelengths

of the radiation could make them absorb a high amount of solar radiation and block as much as

possible infrared radiation (fig. 2.14 shows the spectrum of the two types of radiation).

• A higher receiver temperature could amplify natural convection, especially in case the wind velocity

is relevant. A way to partly limit the convection in external cylindrical CRS could be made reducing

the diameter of the tubes hence the roughness of the receiver.

A final consideration can be made, looking at eq. 2.19. A higher concentration ratio always improves

the thermal efficiency of the receiver. A higher area of the collector, though, means that the heliostats

are placed farther from the tower. This could have a limited impact in lowering the blocking/shading, the

atmospheric and the spillage efficiency. Its main drawback, however, is that the investment cost raises,

so a high concentration ratio is advisable as long as it is economically convenient.

2.4.4 Towards a new model for convective heat transfer

The analysis helped to understand the efficiency balance from the incoming direct solar radiation until

the thermal power absorbed by the fluid. It is important to remark that this power must be guaranteed

by a correspondent design of the receiver (that is, in this case, the heat exchanger). This process must

take into consideration the conduction among the receiver parts and the convection between the receiver

and the HTF, and how they are affected by different temperatures: in fact, the receiver is characterized

by sharp gradients of temperature that make the heat transfer processes vary a lot depending on the

location. Without this correct the design, it is not possible to guarantee the energy balance and thus

operate at the rated temperature of the receiver.

Considering the thermal losses at the receiver, the analysis showed that radiative losses represent

the major cause. However, convective losses are still relevant, since they represent around a 10% of

the receiver losses. This value, moreover, increases dramatically with the wind velocity. In future, the

use of selective surfaces resistant to high temperatures and oxidation could reduce the radiative losses
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dramatically, increasing the relative impact of convective losses in a significant way. It is clear, then, that

convection phenomena must be known properly.

However, heat transfer is especially hard to model whenever convection is involved. The first reason

is that convective heat transfer always includes a certain grade of turbulence. Turbulence is really tough

to model given its unstable nature. Correlations rely on simplifications that usually do not occur, re-

garding, for example, roughness, geometry, thermophysical properties of the fluid. Moreover, turbulence

shifts the heat losses from a global to a local point of view: if, one one hand, solar radiation still hits

the surface of the receiver in an organized way (assumed to be a Gaussian distribution in sec. 2.4.2.A),

on the other hand the turbulence that generates due to air convection leads to a chaotic motion of the

fluid that makes the heat losses strongly locally dependent, without giving the possibility to describe

them with a global distribution. Although the empirical correlation of Siebers & Kraabel represents an

established formula accepted by the literature in numerous cases, it is clear that it cannot solve heat

transfer locally. However, a prediction of the local conditions of the flow is crucial, since the fluid can

influence significantly the temperature of the receiver and its local thermal stresses. Material failure due

to overheating still represents a major issue in modern thermal receivers [9]. In particular, it must be

guaranteed that the maximum temperature does not exceed the limits of the material. This can be done

only if the local conditions of the receiver are modeled in a proper way and, consequently, the fluid flow

is locally predicted.

It is then clear that a suitable efficacious model to assess the locally dependent properties of the

convective flow is needed. CFD has been already presented in sec. 1.1, and it represents a rather

interesting option: it directly tackles the governing equations involved in convection, and solves them

with a consistent approach, being able to handle the unsteadiness and variability of the thermodynamic

state of the system. Obviously some assumptions still have to be made, but they are far closer to the

reality than what a global approach does. Numerical simulation is also effective in the other heat transfer

processes (conduction and radiation) and makes all of them able to be coupled. Another advantage

that it has is that it can predict the flow variations during transients: for example whenever the fluid

cycle is regulated, or in the initial transient before reaching the nominal operative conditions. CFD can

also be useful to describe the convection of the HTF in the receiver, in the storage process and in the

condensation of the fluid: all these steps comprise a certain rate of convection, that must be predicted

to optimize the system and make it safe. Given all these advantages, CFD is selected to be the way to

analyze convection in the next chapters. As a first modelization, a CFD code will be developed to study

natural convection.

CFD studies applied to natural convection of thermal receiver are largely available in the literature.

Among the studies relative to tubular receivers, Christian & Clifford (2012) used a Spalart-Allmaras tur-

bulence model to evaluate the convective and radiative losses of the Solar Two cylindrical receiver [56].
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Kim, Kim & Stein (2015) analyzed a series of progressively enclosed receivers, varying from an external

receiver to a full cavity receiver [59]. They used a standard k − ε model. Both works were carried out

with the ANSYS FLUENT commercial code, and do not mention the treatment of the thermophysical

properties (if some were considered constant or not). Fang, Wei, Dong & Wang analyzed natural and

forced convection of a cavity receiver under windy conditions (2011) [60]. Again, they used a standard

k− ε model solved with FLUENT. Very few works used a Direct Numerical Simulation approach to study

natural convection; one important example is the work of Lé Queré, Minot & Mirenayat (1981), that stud-

ied an isothermal cubic open cavity [61]. Lé Queré also published many articles about turbulent natural

convection in air-filled cavities with Direct Numerical Simulations and Large Eddy Simulations, also con-

sidering the effect of the variation of the thermophysical properties due to the change of temperature, in

2004 [62] and 2005 [2].

The objective of the next chapters is to develop an important numerical tool that can be applied to

energy and mass transfer processes, and show its effectiveness when applied in the analysis of the

natural convection of a cylindrical external receiver. The CFD codes will be developed by using the

C++ programming language. Its main advantage is that it is a compiled language, which makes it really

efficient and keeps the time of execution low, even though it presents a good rate of flexibility. Many

commercial CFD programs already exist, but the goal of this thesis is to develop a code from scratch

optimized for the study natural convection at the receiver of a solar tower.

After an explanation of the main phenomena analyzed, the code developed will be verified and val-

idated with the literature, in order to build up a reliable computational structure that is able to tackle

natural convection.
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Engineering processes that involve fluid dynamics and heat transfer are all governed by laws that

can be expressed, with a certain amount of simplification, by a set of equations. All of these equations

are based on the conservation of a specific property and involve the constitutive nature of the material.

In this thesis, three main conservation equations will be considered. They regard three quantities: mass,

momentum, and energy. The equations will be solved directly, at every time step, without any turbulence

model. This approach is called Direct Numerical Simulation (DNS).1 The advantage of using it is that it

is the most precise (and therefore reliable) to describe mass and energy transformation processes: all

the scales of energy transfer are computed, without having to formulate theoretical models to simplify

the computation process.

3.1 Governing Equations

Before analyzing each equation singularly, it is important to understand that the mass, the momentum

and the energy conservation equations can be viewed as a particular case of a single equation: the

convection-diffusion equation. In its differential form, it can be expressed as in the form

∂(ρ φ)

∂t︸ ︷︷ ︸
I

+∇ · (ρuφ)︸ ︷︷ ︸
II

= ∇ · (Γ∇φ)︸ ︷︷ ︸
III

+ Sφ︸︷︷︸
IV

(3.1)

where ρ is the fluid density, φ is the variable of interest, u is the velocity vector, Γ is the diffusion

coefficient and Sφ is the source term. This equation describes a phenomenon in which the property φ is

transported by means of two phenomena: convection and diffusion. It can be divided in four terms:

I. The rate of change of the variable. It indicates the change of variable due to its accumulation.

II. The convective term. It indicates the transport of the quantity due to the flow of the fluid.

III. The diffusive term. It indicates the transport of the quantity due to the interaction with close particles.

IV. The source term. It indicates the rate of generation of the quantity in the domain.

Mass, momentum and energy equations only represent different form of this equation, and the afore-

mentioned terms can be pointed out in all of them. They are presented below, in their differential form.

Table 3.1: Convection-diffusion equation form for mass, momentum and energy equations.

Equation φ Γ Sφ

Mass 1 0 0
Momentum u µ −∇p+∇ · τ −∇ · (µ∇u) + ρg

Energy u k −∇ · q̇− p∇ · u + τ : ∇u

1The literature usually refers to a simulation as DNS only when all the three dimensions are involved. However, a direct solution
of the 2D Navier-Stokes equation can be performed as well (just neglecting the projection of the equation on the third axis). For
simplicity, from now on the approach will be said to be a DNS also when applied to a 2D studies.
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Mass conservation equation

The differential form of the mass conservation equation is

∂ρ

∂t
+∇ · (ρu) = 0 (3.2)

The velocity vector as a function of its independent components is u = u i + v j + w k, where u, v and

w are the velocities referred to the x, y and z axes respectively. Eq. 3.2 is also known as continuity

equation. It states that the mass increase in an infinitesimal control volume is equal to the net flux on the

control volume (so, basically, that no mass can be generated). Using the mass conservation equation

and the calculus identities B.1 and B.2, the right-hand side of the convection-diffusion equation becomes

ρ
∂φ

∂t
+ ρu · ∇φ+

���
���

���
�:0

φ
∂ρ

∂t
+ φ (∇ · (ρu))

mass conservation

= ρ
∂φ

∂t
+ ρu · ∇φ (3.3)

Momentum conservation equation

The differential form of the momentum conservation for a Newtonian fluid equation is

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+∇ · τ + ρg + fe (3.4)

τ , the deviatoric stress tensor, is defined as τ = µ
(
∇u +∇uT

)
− 2

3 µ (∇ · u) I, where µ is the dynamic

viscosity and I is the identity matrix. p is the pressure, g is the gravity acceleration and fe represents the

surface body forces (except gravity). In the problems considered, the latter term will be equal to zero.

The equation, then, can be rewritten as

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+∇ ·

(
µ (∇u +∇uT)− 2

3
µ (∇ · u) I

)
+ ρg + fe (3.5)

The momentum is associated with the kinetic energy of the system. The nonlinearity nature of the term

ρ (u · ∇) u is the main responsible for turbulence.

Energy conservation equation

The energy equation states that the internal energy increase of a fluid is equal to the net sum of the

heat fluxes around it. It can be written as the function of the specific internal energy of the fluid u, the

external heat flux q̇ and the rate of generation of the specific internal energy Φe.

ρ
∂u

∂t
+ ρu · ∇u = −∇ · q̇− p∇ · u + ��

��:0
τ : ∇u

friction negligible
+ Φe (3.6)
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In heat exchange problems the contribution of the deviatoric stresses on energy can be considered

negligible compared to the other terms appearing in the equation. In this dissertation also Φe will be

considered null. The internal energy of a fluid can be expressed as a function of the temperature T and

the specific heat cP as du = cP dT . Assuming that cP is constant and writing heat conduction explicitly

(q = −k∇T , according to Fourier’s law), the energy conservation equation can be rearranged as

ρ cP
∂T

∂t
+ ρ cP u · ∇T︸ ︷︷ ︸

II

= ∇ · (k∇T )︸ ︷︷ ︸
III

−∇ · q̇R − p∇ · u (3.7)

k is the thermal conductivity. q̇R represents the remaining heat flux not due to conduction (e.g. the

radiative heat flux). In eq. 3.7 it is possible to recognize the convective and diffusive terms (II and III).

Incompressible flow

In case of incompressible flow (dρdt = 0), the mass, the momentum and the energy equations can be

reformulated. Eq. 3.2 is reduced to the form

∇ · u = 0 (3.8)

Using eq. 3.8 and the rate-of-strain tensor S = 1
2

(
∇u +∇uT

)
, the momentum equation becomes

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+∇ · (2µS) + ρg (3.9)

In case the viscosity is constant, applying the identities B.3, B.4 and eq. 3.8, the equation becomes

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+ µ∇2u + ρg (3.10)

where∇2 represents the Laplacian. Eq. 3.10 represents the Navier-Stokes equation for incompressible

fluids. The energy equation, finally, becomes

ρ cP
∂T

∂t
+ ρ cP u · ∇T = ∇ · (k∇T )−∇ · q̇R (3.11)

Boussinesq approximation

Although the incompressible form of the governing equations simplifies significantly the mathematical

formulation of fluid dynamics, many times it is too distant from the reality to be applied. The Equation

Of State (EOS) of a fluid usually expresses the density as a function of temperature and pressure

(ρ = ρ̃ (p, T )). Convection heat transfer always involves a variation of these two variables to a certain

degree; however, if on the one hand the pressure usually changes within a limited range, especially in
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natural convection, on the other hand the temperature always vary enough to have a tangible influence

on the density. The Boussinesq approximation permits to combine simplified equations and the effect of

the density variation where it counts more: in the buoyancy forces. This approximation states that the

density is considered constant (ρ = ρ0, where ρ0 = ρ̃ (T0)) everywhere except in the term that multiplies

the gravity acceleration, responsible for the buoyancy forces, where it is considered to be linear with the

temperature. This assumption is only valid if ∆T is little, so that the density can effectively be assumed

as linear and ∆ρ� ρ0. In the mass conservation equation ρ remains constant, so the final form is equal

to eq. 3.8. Together with the Boussinesq approximation, it is generally assumed that k, cP and µ are

constant as well. The Navier-Stokes equation becomes

ρ0
∂u

∂t
+ ρ0 (u · ∇) u = −∇p+ µ∇2u + ρ0 [1− β (T − T0)] g (3.12)

where β is the thermal expansion coefficient of the fluid. ρ0 g is usually merged with the pressure: given

that g = −g k, where g is the gravity constant, it is possible to define ∇p′ = ∇p − ρ0 g = ∇p + ρ0 g k =

∇p+ ρ0 g∇z = ∇ (p+ ρ0 g z). Then, the momentum and the energy equation can be written as

ρ0
∂u

∂t
+ ρ0 (u · ∇) u = −∇p′ + µ∇2u− ρ0 β (T − T0) g (3.13)

ρ0 cP
∂T

∂t
+ ρ0 cP u · ∇T = k∇2T −∇ · q̇R (3.14)

Conduction in solids

Conduction in solids can be viewed as a particular case of eq. 3.11 where u = 0.

ρ cP
∂T

∂t
= ∇ · (k∇T )−∇ · q̇R + φe (3.15)

Stream function and vorticity

The governing equations have been expressed as function of velocity. However, they can also be

expressed using the stream function and the vorticity. The advantage of this approach is that it involves

a minor number of equations in 2D cases (considering that eq. 3.13 must be projected on the x and y

axis to be solved). This method can be applied only when ∇ · u = 0. The condition is always respected

by giving the definition of the stream function ψ, that is such that

u = ∇×ψ (3.16)

Applying the identity B.5, eq. 3.8 is respected automatically, and does not need to be solved. If the flow

is 2D, the stream function can be expressed as a scalar function. The details are explained in sec. B.3.
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The stream function becomes ψ = ψ k, and the velocity projections can be easily expressed as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(3.17)

Knowing the velocity components, ψ can be obtained by

ψ =

∫ B

A

u dy − v dx (3.18)

The vorticity ω, instead, is defined as

ω := ∇× u (3.19)

In a 2D case, as explained by sec. B.3, ω becomes ω = ω k, where

ω =
∂v

∂x
− ∂u

∂y
= −∇2ψ (3.20)

Although the governing equations as functions of the stream function and the vorticity will not be used,

these parameters will be calculated to compare the results with reference cases of other authors.

3.2 Numerical Methodology

The CFD approach consists in resolving the governing equations of fluid dynamics by means of

numerical analysis. The discretization method used in this dissertation is the Finite Volume Method

(FVM), since it is particularly suitable in simple geometries that are modeled using structured meshes;

such meshes will be used in this thesis, because no complex geometries are investigated. A mesh is

said to be structured if it is identified by regular connectivity. The FVM approach consists in discretizing

the governing equations on a mesh and integrate them in non-overlapping control volumes associated

to every node of the mesh. For every node a unique thermodynamic state is defined. Properties are

not only defined at the nodes: whenever the equations involve properties that must be calculated at the

volume surfaces, a suitable interpolation method is used. These methods will be explained later on in

convection problems.

The approach used to discretize the mesh is based on rectangular-face control volumes, as shown

by fig. 3.1. This approach is called Node Centered: every node is situated at the center of the control

volume it refers to. At the boundaries, the nodes have no volume, so the equations are solved in their

differential form using consistent boundary conditions. For every node P , the neighboring nodes W , E,

S, N and the outer faces w, e, s, n are defined (in the 3D case the bottom and top nodes B, T and

they relative faces b, t also appear). The derivatives at the faces are calculated as the difference of the

property at two adjacent points divided by their distance. For example, ∂T
∂x

∣∣
w

= TP−TW
dPW

, where dPW is
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Figure 3.1: Collocated 2D mesh together with the nomenclature used for neighboring nodes and faces.

the distance between the nodes P and W . Time discretization, instead, depends on the method used.

A method is said to be explicit if the variable to be computed only depends on known variables, while

it is said to be implicit if it also depends on unknown variables. The discretization is performed at the

center of the time step; there are many types of implicit and explicit methods, and each one defines a

way to calculate the variables at n + 1/2 (n is the current time step, n + 1 is the next time step). Some

methods of first and second order will be presented in the problems of the next chapter.2 The derivatives

in time are discretized at n+ 1/2 as well (e.g. ∂ρ
∂t

∣∣
n+1/2

= ρn+1−ρn
∆t ). After the discretization, it is always

possible to express the equations for the point P as a function of the neighboring points:

aP φ
n+1
P = aW φn+1

W + aE φ
n+1
E + aS φ

n+1
S + aN φ

n+1
N + aB φ

n+1
B + aT φ

n+1
T + bP (3.21)

aP , aW , aE , aS , aN , aB , aT , bP are the discretization coefficients. bP is the coefficient of the known

variables, while all the other coefficients multiply an unknown variable. The existence and unique-

ness of a solution to the set of algebraic equations is guaranteed by the fact that the number of the

equations is equal to the number of unknowns, since for every node there exists an equation. In an

explicit method eq. 3.21 reduces to the form aP φ
n+1
P = bP , since there are no unknown variables ex-

cept the one at the node. Explicit methods have the advantage of being low CPU consuming, since

they compute the property directly. The main drawback of these methods is that they must fulfill the

Courant–Friedrichs–Lewy (CFL) condition to be stable: the time step must be small enough to make the

discretized equations consistent with the initial governing equations [64]:

∆t < C ∆x, ∆t < C ∆x2 (3.22)

where C is a number that depends on the governing equation it is referred to and the thermodynamic

state of the system. In complex problems a fine mesh is needed, so the time step has to be small and the

2A convergence method is said to be of order n if the error is proportional to the n-th power of the step size [63].

42



number of iteration dramatically rises. Implicit methods, instead, are unconditionally stable. Therefore,

a higher time step can be chosen; however, many iterations per time step are needed. In fact, the

properties are calculated by means of an iterative method that hypothesizes them and computes them

until the result of two subsequent iterations differs by a value minor than the convergence parameter

δ. δ is a value set before the iteration and represents to the computational error. The choice between an

implicit or explicit method depends on the nature of the problem.

Staggered Mesh

A collocated mesh is a mesh where all the properties are defined at the nodes, as explained in

the previous section. Together with this approach, the staggered mesh approach will be used. In a

staggered mesh, the variables that are expressed as vectors (in this case the velocity) are defined in

a secondary grid where the center of the control volumes are located at the center of the faces of the

collocated grid. The gray areas that cover uP and vP shown in fig. 3.2 correspond to the control volumes

Figure 3.2: Staggered mesh. The gray areas represent the x and y staggered control volumes.

of the grids staggered along the x and y axes respectively. To calculate the velocities on the collocated

mesh, an interpolation among consecutive points of the staggered mesh is performed.

Staggered grids will be used because they can avoid incorrect odd-even decoupling between pres-

sure and velocity, and can be easily defined in structured grids.

Iterative solver

In implicit methods, a line-by-line Tri-Diagonal Matrix Algorithm (TDMA) algorithm is used, which

consists in solving any column of the mesh with the TDMA algorithm, and then loop them with a Gauss-

Seidel algorithm.3 In 3D problems, surfaces are looped one more time with the Gauss-Seidel algorithm.

3TDMA and Gauss-Seidel iterative solvers are described by Conte & Boor (1980) [65].
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4.1 Convection-Diffusion Equation

The first two problems represent a first numerical model to study two phenomena widely present in

heat and mass transfer: diffusion and convection.

4.1.1 Two-Dimensional Heat Conduction in a Nonuniform Material

The first problem analyzed treats the phenomenon of diffusion through heat conduction. In a solid,

heat propagates through diffusion between molecules, since no motion is involved.

Problem definition

An infinitely long rod is composed of four different materials that have different properties. The west

wall is in contact with a fluid at TgW = 33 ◦C and heat transfer coefficient of hW = 9W/m2K. The east

wall temperature varies as T = 8 + 0.005 t ◦C. The south wall is kept constant at T = 23 ◦C. The north

wall is heated by a uniform flux of Q̇fN = 60W/m.1 The initial temperature field is T0 = 8 ◦C. The

Figure 4.1: Section of the rod, showing the four materi-
als it is composed of.

x[m] y[m]

p1 0.5 0.4
p2 0.5 0.7
p3 1.1 0.8

ρ[kg/m3] cP [J/kgK] k[W/mK]

M1 1500 750 170
M2 1600 770 140
M3 1900 810 200
M4 2500 930 140

Table 4.1: Geometric coordinates and physical properties of the
four materials.

goal is to show the numerical solution of the diffusion equation and calculate the T field variation for

t ∈ [0, 10000] s.

Resolution of the governing equations

Heat conduction in a solid is governed by eq. 3.15. φe is null in this case. To make a more general

case in which convection and incoming flow are possible at every wall, the boundary conditions are

reformulated in tab. 4.2. Since a value of h =∞ is not possible to use in numerical computation, a value

of hE = hS = 1030 is used. NB indicates the neighboring node or in this case the outer conditions.

160W/m distributed along an edge long 1.1m result in a heat flux q̇f = 54.5W/m2.
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Table 4.2: Boundary conditions of the four material problem reformulated.

Wall [NB] TgNB [◦C] hNB [W/m2K] Q̇←fNB [W/m]

W 33 9 0
E 8 + 0.005 t ∞ 0
S 23 ∞ 0
N 0 0 60

The section of the rod is divided such that the control volumes between p0 and p1, p1 and p2, p2 and p3

have the same height, and the ones between p0 and p1, p1 and p3 have the same length. The horizontal

nodes numeration ranges from 1 to N1 +N2 for internal nodes (N1, j are the nodes of the volumes that

have xp1 as coordinate of the east face), and the vertical numeration ranges from 1 to M1 +M2 +M3.

Eq. 3.15 is integrated in space for the internal nodes:

∫
V

ρ cP
∂T

∂t
dV =

∫
V

∇ · (k∇T ) dV (4.1)

Applying the divergence theorem B.7, discretizing in space and considering that ρ and cP are constant

in the volumes and Sw = Se and Ss = Sn, the equation becomes

ρP cPP
∂TP
∂t

VP = −kw
TP − TW
dPW

Sw + ke
TE − TP
dPE

Sw − ks
TP − TS
dPS

Ss + kn
TN − TP
dPN

Ss (4.2)

After time integration the equation becomes

ρP cPP
Tn+1
P − TnP

∆t
VP = β

[(
−kw

TP − TW
dPW

+ ke
TE − TP
dPE

)
Sw +

(
−ks

TP − TS
dPS

+ kn
TN − TP
dPN

)
Ss

]n+1

+ (1− β)

[(
−kw

TP − TW
dPW

+ ke
TE − TP
dPE

)
Sw +

(
−ks

TP − TS
dPS

+ kn
TN − TP
dPN

)
Ss

]n
(4.3)

β is a parameter that makes it possible to use different integration schemes: β = 0 corresponds to the

explicit Euler method, β = 1 to the implicit Euler method and β = 1/2 corresponds to the Crank-Nicolson

method. The discretization coefficients are shown below:

aW = β kW
Sw
dPW

, aE = β kE
Sw
dPE

, aS = β kS
Ss
dPS

, aN = β kN
Ss
dPN

, aP = ρ cP
VP
∆t

+ aW + aE + aS + aN ,

bP = ρ cP
VP
∆t

TnP + (1− β)

[(
−kw

TnP − TnW
dPW

+ ke
TnE − TnP
dPE

)
Sw +

(
−ks

TnP − TnS
dPS

+ kn
TnN − TnP
dPN

)
Ss

]
(4.4)

k is referred to the face, and assumes a value of kf = dRL
dLf/kL+dRf/kR

at the boundary between two

materials, where R and L are the right and left nodes respectively.2 At the boundaries, the sum of the

incoming heat flux (convective flux and given flow) on the surface and the outgoing one (the conductive

2kf is defined in this way to make the heat flux equal on both sides of the surface. The explanation is given in sec. B.4.
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flux) must be zero. In fact, the nodes have no volume, so there is no accumulation of energy.

hNB

(
Tn+1
gNB − T

n+1
P

)
+
Q̇←fNB
L

= −kP
Tn+1
NB − T

n+1
P

dPNB
(4.5)

where hNB is the heat transfer coefficient of the gas outside the NB wall and Q̇←fNB
L is the given flow.

The discretization coefficients can be extracted from eq. 4.5.

aNB =
kP

dPNB
, aP = hNB + aNB , bP = hNB T

n+1
g NB +

Q̇←fNB
L

(4.6)

For the explicit scheme, the CFL condition needed is shown below

∆t ≤ 0.25 min
∆x∆y

k/ρ cP
(4.7)

Results

The problem is solved using a constant collocated mesh of 66 × 48 internal control volumes.3 The

code is tested with the reference solution obtained by the team of the Heat and Mass Transfer Techno-

logical Center (CTTC) of Terrassa. Fig. 4.2 shows the heat maps obtained with a time step ∆t = 100 s

(a) Explicit Euler (b) Crank-Nicolson (c) Implicit Euler

Figure 4.2: Temperature maps of the material section at t = 5000 s.

(except the explicit scheme that nedeed a ∆t = 0.09 s to respect the CFL conditions). The explicit Euler

makes almost no error, since it time step is really low; the Crank-Nicolson method, still, is a second order

method, so it has a high accuracy despite the large time step. The implicit Euler is a first order method

and has a large time step, so it makes a small error, as fig. 4.2 shows. Setting a time step of ∆t = 1 s

almost no difference is found.

The initial time variation of the temperatures of two locations can be found in fig. C.1. The explicit

Euler almost overlaps with the reference solution, while both the Crank-Nicolson and the implicit Euler

3The actual mesh is, therefore, 68× 50, due to the external nodes. The notation used in the dissertation will always refer to the
internal nodes, also when it is not specified.
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show a small difference; the second order method, though, gives a more accurate result for the very first

time steps.

Comparing the convection-diffusion equation with the conduction equation, it is possible to point out

the diffusivity term Γ = k
ρ cP

. This term takes the name of thermal diffusivity. The diffusivity of the

four materials are ΓM1
= 1.5× 10−4, ΓM2

= 1.1× 10−4, ΓM3
= 1.3× 10−4, ΓM4

= 0.6× 10−4. The

diffusivity influence the velocity at which the temperature of wall E propagates through the medium.

The consequence of fact that ΓM4 is almost the half of ΓM2 can be seen in fig. 4.2: although a heat

flux is entering the north wall and the south wall (which has a lower temperature than E) is farther, the

isotherms in M4 are closer to the east wall.

The three methods demonstrate to be suitable for the study of conduction, especially if the order is

II and the time step is small. The code is suitable to be applied in conduction problems regarding the

receiver of a CRS.

4.1.2 Smith-Hutton Problem

The Smith-Hutton problem (1982) [66] involves all the terms of the convection-diffusion equation, so

it is useful to introduce convection.

Problem definition

The task is to solve the convection-diffusion equation for the prescribed velocity field shown in fig. 4.3.

In this case, the steady state of the problem will be analyzed. The flux enters the bottom-left section and

Figure 4.3: Smith-Hutton problem configuration. Figure
retrieved from Smith & Hutton (1982) [66].

velocity field
component function

u 2 y
(
1− x2

)
v −2x

(
1− y2

)

Table 4.3: Velocity field for the
Smith-Hutton prob-
lem.
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goes out in the bottom-right section. Being α = 10, the boundary conditions of the property φ are

φ = 1 + tanh [α (2x+ 1)] y = 0; x ∈ (−1, 0) (inlet)
∂φ

∂y
= 0 y = 0; x ∈ (0, 1) (outlet)

φ = tanh α (elsewhere)

The solutions of the problem depend on a parameter called Péclet number, defined as the ratio of

convection transport to diffusion transport: Pe = ρ uL
Γ . u and L are the characteristic velocities and

length of the problem, in this case equal to 1. Results for Pe = 10, 103, 106 are compared.

Resolution of the governing equations

Integrating in space and applying the divergence theorem B.7, the left-hand side of the convection-

diffusion equation 3.1 can be rewritten as

∂(ρ φ)

∂t

∣∣∣∣
P

VP + ṁe φe − ṁw φw + ṁn φn + ṁs φs (4.8)

where ṁf = ρu nSf is the mass flow on the surface f (mf > 0 in the positive coordinate direction). The

mass equation (eq. 3.2), applying eq. B.1 and multiplying by φP becomes

φP
∂ρ

∂t

∣∣∣∣
P

VP = ṁw φP − ṁe φP + ṁs φP − ṁn φP (4.9)

Applying eq. B.1 to the first term of eq. 4.8 and inserting eq. 4.9, eq. 4.8 becomes

ρ
∂ (φP )

∂t

∣∣∣∣
P

VP + ṁe (φe − φP )− ṁw (φw − φP ) + ṁn (φn − φP ) + ṁs (φs − φP ) (4.10)

The integration in space of the right-hand side of the convection-diffusion equation, instead, leads to

Γe
∂φ

∂x

∣∣∣∣
e

Se − Γw
∂φ

∂x

∣∣∣∣
w

Sw + Γn
∂φ

∂x

∣∣∣∣
n

Sn − Γs
∂φ

∂x

∣∣∣∣
s

Ss (4.11)

Discretizing in space ∂φ
∂x |f = φR−φL

dRL
and substituting Df = Γf

Sf
dRL

, eq. 4.11 can be expressed as

De (φE − φP )−Dw (φP − φW ) +Dn (φN − φP )−Ds (φP − φS) (4.12)

The property at the faces φf is not known, so it must be interpolated by an approximation scheme

for convective terms. The schemes investigated in the thesis are five:

Upwind Difference Scheme (UDS) a first order method, unconditionally stable.
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Central Difference Scheme (CDS) a second order scheme, conditionally stable.

Second-order Upwind Difference Scheme (SUDS) a second order scheme, conditionally stable.

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) a third order scheme, con-

ditionally stable.

Sharp and Monotonic Algorithm for Realistic Transport (SMART) an adaptive scheme based on QUICK,

locally reduced to UDS to be stable.

The High Resolution Schemes (HRSs) (as CDS, SUDS, QUICK, SMART) are introduced using the

deferred correction approach: ṁf (φf − φP ) is expressed as ṁf

(
φUDSf − φP

)
+ ṁf

(
φHRSf − φUDSf

)
,

such as when the algorithm converges the φUDSf terms cancel out. Moreover, named F the node such

that f stands between F and P , the substitution ṁf

(
φUDSf − φP

)
=

ṁf−|ṁf |
2 (φF − φP ) is done. Then,

eq. 4.10 and eq. 4.12 are combined.

�
��
�
��
�*0

ρ
∂(φP )

∂t

∣∣∣∣
P

VP

steady state

+
ṁe − |ṁe|

2
(φE − φP )− ṁw + |ṁw|

2
(φW − φP ) +

ṁn − |ṁn|
2

(φN − φP )

− ṁs − |ṁs|
2

(φS − φP ) = De (φE − φP )−Dw (φP − φW ) +Dn (φN − φP )−Ds (φP − φS)

− ṁe

(
φHRSe − φUDSe

)
+ ṁw

(
φHRSw − φUDSw

)
− ṁn

(
φHRSn − φUDSn

)
+ ṁs

(
φHRSs − φUDSs

)
(4.13)

from which it is possible to obtain the discretization coefficients. All the boundary conditions are trivial to

obtain, except the one at the outlet, that must be discretized:

∂φ

∂y

∣∣∣
P

=
φN − φP
dPN

= 0 −→ φP = φN (4.14)

The equation is resolved with the implicit method: an initial φ distribution is guessed, and then values

of the mesh are looped until convergence.

Results

The problem is solved with a constant collocated mesh of 21 × 10 nodes, to be compared with a

similarly spaced mesh presented in the reference article [66]. The maps of the flows are presented in

fig. C.2. It is important to state that the SMART scheme did not show a stable convergence for the

cases Pe = 103 and Pe = 106: the value of the nodes close to the region where the gradient of φ is

high got close to the result and started oscillating around it, so the error could not become lower than

convergence parameter. This is probably due to the fact that the SMART scheme is adaptive, and a little

variation of φP could change significantly the equation used by the scheme to make the interpolation.

The maps presented, then, are the ones obtained after a significant amount of iterations that made sure
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that the variables were only having really slight variations around the result. The low incidence of this

error is shown in the flow maps.

The values of φ at the outlet, obtained with the five different schemes, are compared. The solution for

(a) Pe = 10 (b) Pe = 103 (c) Pe = 106

Figure 4.4: φ distribution at the outlet for different convective schemes and Péclet numbers.

Pe = 10, shown in fig. C.3(a), does not present great differences among the convective schemes. For

Pe = 103, instead, the results start to become clearly different. The UDS curve is separated from the

group, especially in the points relative to a high gradient. SMART and QUICK schemes stay close to the

reference solution, although the latter, together with the SUDS scheme, is responsible for an unphysical

φ value higher than the inlet maximum.4 The CDS scheme as well seems to be pretty accurate. For

φ = 106, this schemes apparently becomes the most accurate, closer than SMART to the reference

solution in the points relative to the steepest gradient. The nature shown by the other schemes is the

same as for Pe = 103, although it is accentuated. CDS, despite being only a second order method,

could appear as the best choice looking at the outlet; however, the maps of the flow (appendix C) show

its inaccuracy because of the spacial oscillations it creates. This phenomenon is called overshooting,

and it is typical for non-dissipative convection schemes. Looking at the maps, it is clear that the most

plausible is the one obtained with SMART: QUICK shows little overshooting as well, while SUDS involves

some inaccuracies in the prediction of diffusion such as UDS, though at a lower rate. This phenomenon

is called false diffusion: the convective term gives a solution that is the one expected with a higher

diffusive term Γ (so a lower Péclet number) [67]. False diffusion tends to decrease with the accuracy

order of the convective scheme.

Analyzing the results, the SMART method is chosen for future problem. It shows neither overshooting

nor false diffusion, giving at the same time the solution that get closest to the reference. It is important

4Unphysical because it involves a local decrease in the specific entropy of the flow, in contrast with the third law of thermo-
dynamics: imagine that φ is the temperature of the fluid: this would mean that section of the fluid with the highest temperature,
surrounded by regions of lower temperature, would increase its temperature in a spontaneous process.
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to note, also, that the “instability” of the SMART scheme is not replicated in explicit methods, since the

interpolation is performed only on already-known node values.

The results obtained with the SMART scheme show a substantial difference: when the Péclet num-

ber is low (Pe = 10), diffusion is dominant. Although convective transport is clear, diffusive transport

substantially changes the distribution of the variable φ along its flow. For higher Pe, convective transport

dominates, and the flow distribution almost follows the velocity distribution.

The Smith-Hutton problem is a relatively simple configuration: the velocity field is known, and does

not depend on the convective term of the equation. In the reality, the velocity field is obtained with

the momentum equation, that involves a nonlinear term dependent on the velocity itself. Whenever the

velocity grows, the influence of this term increases and the complexity of the problem as well. The dif-

fusive term acts as a dissipative force for the velocity; whenever this term becomes too little compared

to the convective term, this dissipation becomes less influent and turbulence arises (due to the nonlin-

earity of the equation). This transition will be discussed and explained in the next section, where the

convection-diffusion equation will be applied to the governing equations of fluid dynamics.

4.2 Laminar Flow

Laminar flows are characterized by relatively high momentum diffusion and low momentum convec-

tion. Hence, no eddies are created, since the kinetic energy of the fluid is damped by the diffusive term

at a global scale. Laminar flow is always present at a local scale next to solid boundaries: in those

regions the velocity is null due to wall adhesion, so the convective term disappears and the diffusive

becomes significant.

Laminar flow is presented with two historically relevant problems: the driven cavity problem and the

differentially heated cavity (sometimes referred as “thermally driven cavity”).

4.2.1 Driven Cavity – Laminar Flow

The driven cavity problem has been one of the first and most studied problems for the computational

resolution of the momentum equation because of its simplicity and versatility. The 2D case is analyzed

and compared with the reference article of Ghia, Ghia & Shin (1982) [68].

Problem definition

An infinitely-tall cavity having a square horizontal section of side L contains an incompressible fluid

at p = p0. At the time t = 0, one of the lateral walls starts moving at the velocity u = U0. A x y

section of the cavity is shown in fig. 4.5. The goal is to solve the velocity-pressure field of the fluid. The
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Figure 4.5: Horizontal section of the driven cavity. Fig-
ure retrieved from Marchi, Suero & Araki
(2009) [69].

Re

100 400 1000
3200 5000 7500

Table 4.4: Reynolds numbers ana-
lyzed.

solution depends on the Reynolds number, defined as Re = ρU0 L
µ . The Reynolds numbers is changed

modifying the side of the cavity (the thermophysical properties of the fluid do not change).

Resolution of the governing equations

The equations that govern this problem are the mass conservation equation and the momentum

equation. The method used to solve them is called Fractional Step Method (FSM), firstly described by

Chorin (1968) [70]; this method is known for its simplicity and accuracy.

The momentum conservation equation for incompressible flows 3.10 is analyzed. For simplicity, the

convective and diffusive terms are grouped in the function R (u) = −ρ (u · ∇) u + µ∇2u.

ρ
∂u

∂t
= R (u)−∇p (4.15)

Eq. 3.8 and 3.10 are integrated in time. The mass equation is treated implicitly. The pressure-dependent

term of the momentum equation is integrated implicitly, while the convective-diffusive term R (u) is inte-

grated with a second order explicit Adams-Bashforth method: R
(
un+1/2

)
= 3

2 R (un)− 1
2 R

(
un−1

)
.

∇ · un+1 = 0 (4.16)

ρ
un+1 − un

∆t
=

3

2
R (un)− 1

2
R
(
un−1

)
−∇pn+1 (4.17)

The FSM is then applied. It consists in the definition of an auxiliary vector up, called predictor velocity ;

the vector is a projection of un+1 and it can be seen as an intermediate step between un and un+1.

up := un+1 +
∆t

ρ
∇pn+1 (4.18)

The existence and uniqueness of up is guaranteed by the Helmholtz decomposition theorem, that states
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that any vector field w can be uniquely decomposed in a pure gradient field and a divergence-free vector:

w = a +∇ϕ (4.19)

In this case, a = un+1 and ∇ϕ = ∆t
ρ ∇p

n+1; the condition ∇ · a = 0 comes from eq. 4.16. un+1 is

extracted from eq. 4.18 and inserted in eq. 4.17:

ρ
up −���

��∆t
ρ ∇p

n+1 − un

∆t
=

3

2
R (un)− 1

2
R
(
un−1

)
−����∇pn+1 (4.20)

The divergence of eq. 4.18 is taken.

∇ · up =���
��:0

∇ · un+1 +
∆t

ρ
∇ · ∇pn+1 (4.21)

It is then possible to express the three unknowns up, pn+1, un+1 with three equations:

up = un +
∆t

ρ

[
3

2
R (un)− 1

2
R
(
un−1

)]
(4.22)

∇2pn+1 = ∇ · up (4.23)

un+1 = up − ∆t

ρ
∇pn+1 (4.24)

Eq. 4.22 is integrated over the staggered volume of the components of the velocity u and v (the projec-

tions on the x and y-axis respectively). The procedure for u is shown (it is analogue for v). un is moved

to the left-hand side of the equation, which is integrated:

∫
VPx

(up − un) dV = (up − un) VPx (4.25)

Named Ru the projection of R (u) on the x-axis, its integration over the volume becomes∫
VPx

Ru dV =

∫
VPx

[
−ρ (u · ∇) u+ µ∇2 u

]
dV

=
B.2, B.4, B.7

−
∫
Sfx

(ρu) u · n dS + µ

∫
Sfx

∇u · n dS
(4.26)

Eq. 4.25 and 4.26 are inserted in eq. 4.22, then the latter is discretized:

upP = unP +
∆t

ρ VPx

(
3

2
Rint, nu − 1

2
Rint, n−1
u

)
(4.27)
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where

Rintu = −{[(ρ ue) ue − (ρ uw) uw] Sw + [(ρ vn) un − (ρ vs) us] Ssx}

+ µ

[(
uE − uP
dPE

− uP − uW
dPW

)
Sw +

(
uN − uP
dPN

− uP − uS
dPS

)
Ssx

]
(4.28)

Eq. 4.23 is integrated over the volume VP and the divergence theorem is used:

∫
Sf

∇pn+1 · n dS =

∫
Sf

up · n dS (4.29)

The equation discretized becomes

(
pn+1
E − pn+1

P

dPE
−
pn+1
P − pn+1

W

dPW

)
Sw +

(
pn+1
N − pn+1

P

dPN
−
pn+1
P − pn+1

S

dPS

)
Ss =

1

∆t
[(ρ upP − ρ u

p
W ) Sw + (ρ vpP − ρ v

p
S) Ss] (4.30)

from which it is possible to extract the convergence coefficients. Finally, eq. 4.24 is discretized:

un+1
P = upP −

∆t

ρ

pn+1
E − pn+1

P

dPE
(4.31)

The resolution of vn+1
P is analogous. Having all the discretized equations, the algorithm to find the next

time step is the following: upP and vpP are found for every P by eq. 4.27; the pressures at n+ 1 are found

by eq. 4.30; the velocity field, composed of un+1
P and vn+1

P , is found by eq. 4.31.

Properties at the faces are calculated with different methods. Mass flows (in the form of ρ uf ) are

evaluated with a mass balance over the control-volume surfaces. The velocities, appearing in the con-

vective term, are interpolated with the SMART scheme.5

At the walls, where the relative velocity between fluid and solid is null, the fluid adheres perfectly:

therefore, the pressure is hydrostatic; since the z-axis is fixed, the gradient towards the direction normal

to the wall is zero (pP = pNB).

Defined dew and dns as the height and the length of each volume, the set CFL conditions become

∆tc = 0.35 min
(√

dew dns
|u|

)
∆td = 0.08 min

(
ρ dew dns

µ

)
 ∆t = min (∆tc, ∆td) (4.32)

where ∆tc is the convective time-step and ∆td is the diffusive time-step. ∆tc depends on the velocity,

so it has to be recalculated at every time-step.

5For the nodes next to the boundaries, the CDS scheme is used. In fact, it only uses the two nodes next to the face. SMART
uses a couple of additional farther nodes: at boundaries, one of them is not available.
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Results

A 128 × 128 velocity-staggered mesh is used. The stream-function and vorticity steady-state maps

for the different Re (fig. C.5, C.6) show the same characteristics of the ones presented in the reference

article. Regarding the stream function, in all the cases a large eddy that touches the four walls is created;

at the top, its velocity is equal to the moving wall, making the eddy spin clockwise. In Re = 100, there are

two counterclockwise secondary eddies of approximately the same measure in the two bottom corners.

The center of the main eddy is located between the geometric center of the cavity and the top-right

corner. For Re = 400, 1000 both the secondary eddies grow, being the bottom-right larger than the

bottom-left. The center of the main eddy shifts toward the center. These evolutions continue for larger

eddies. At Re = 3200 another counterclockwise secondary eddy generates at the top-left corner. At

Re = 7500, finally, the bottom-right eddy splits in two smaller eddies; the smallest, located in the corner,

does not interact with the main eddy, and rotates in the opposite direction of the other. Regarding the

vorticity, as Re rises the higher and higher gradients are created.

The two components u and v of the velocity are compared – respectively along the vertical and

horizontal line through the geometric center. The results agree with the reference study, as shown by

fig. C.7 and C.8. For these Reynolds cases, diffusion plays a significant role. Looking at the maps, it is

possible to see that the relative velocity between fluid and wall is null; then the absolute value of u and

v increases until it reaches a maximum, and falls again. Close to the walls, diffusion is highly dominant.

As Re increases, the location of the maximum absolute velocity shifts toward the wall: the high-diffusive

region, where energy is dissipated, becomes increasingly thin. However, up to Re = 7500, no turbulence

appears.

Looking at the results, it is clear that the method is robust: comparing fig. C.5(c) with fig. C.5(d),

fig. C.6(c) with fig. C.6(d), fig. C.7(c) with fig. C.7(d) and fig. C.8(c) with fig. C.8(d), it is possible to

acknowledge that a mesh of 128 × 128 nodes is sufficient for a consistent analysis of the problem. The

SMART scheme made no errors with an explicit method, as expected, and the FSM resulted to be a

correct tool to resolve mass and momentum conservation equations.

4.2.2 Differentially Heated Cavity – Laminar Flow

The Differentially Heated Cavity (DHC) is another famous benchmark problem for CFD. Its geometric

and boundary-condition simplicity is the same as the driven cavity, with the introduction of the energy

equation due to heat transfer. The DHC problem involves all the equations needed to describe the

natural convection in a external receiver of a CRS plant, with the advantage that they can be studied

with a much simpler configuration. A first, simple case of 2D DHC under the Boussinesq approximation

is compared with two reference articles of De Vahl Davis (1983) [71, 72] to validate the computational
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algorithm created. At a later stage, the dependence of air properties on the temperature is made explicit.

Finally, the computation is extended to the three dimensions.

4.2.2.A Boussinesq fluid, 2D flow

Problem definition

A Boussinesq fluid of Prandtl number Pr = 0.71 is located in a square cavity.6 The top and the

bottom boundaries are perfectly insulated, the west is kept at the temperature Th and the east at Tc.

Figure 4.6: Differentially Heated Cavity, section of the vertical plane. Figure edited from De Vahl Davis & Jones
(1983) [71].

The goal is to solve pressure, velocity and temperature fields of the fluid. The solution of the problem

depends on the Rayleigh number Ra := Gr Pr = ρ2 β g (Th−Tc)D3

µ2 Pr, being D the characteristic length

of the flow (in this case, the side of the square).7 Results are analyzed for Ra = 103, 104, 105, 106.

Resolution of the governing equations

The procedure of the resolution of the driven cavity problem is take as reference to explain the

resolution of the equations of the DHC problem, since they are similar and the FSM is used in this case

as well. Since the DHC lateral walls are vertical, the notation is slightly different:

• the north n and south s references become top t and bottom b references;

• the y-axis becomes z, and the component of the velocity v becomes w.

6The Prandtl number is the ratio of viscous diffusion to thermal diffusion. It is defined as Pr = µ cP
k

.
7Compare with eq. 2.15.
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According to the Boussinesq approximation, the momentum equation takes the form of eq. 3.13. The

parameter R (u) is adjusted to the following form:

R (u) = −ρ0 (u · ∇) u + µ∇2u− ρ0 β (T − T0) g (4.33)

Proceeding with the FSM, the space integration of R (u) leads to

{
Rintu = Rint, dcu

Rintw = Rint, dcw + ρ0 β
(
Tn+1
t − T0

)
g VPz

(4.34)

where Rint, dcu denotes the Rintu of the driven cavity problem.

The energy equation for a Boussinesq fluid is introduced, having the form expressed by eq. 3.14.

Using eq. B.2 and eq. 3.8, it is possible to write

ρ0
∂T

∂t
= −ρ0 [∇ · (uT )] +

k

cP
∇2T = R (T ) (4.35)

where R(T ) represents the right-hand side of the equation rearranged. The energy equation is dis-

cretized with the second-order explicit Adams-Bashforth method:

ρ0
Tn+1 − Tn

∆t
= R

(
Tn+1/2

)
=

3

2
R (Tn)− 1

2
R
(
Tn−1

)
(4.36)

The equation is then integrated within the control volume VP :

ρ0
Tn+1
P − TnP

∆t
VP =

3

2
Rint, nT − 1

2
Rint, n−1
T (4.37)

RintT is the result of the volume integration of the term R(T ):

RintT =− ρ0

∫
VP

∇ · (uT ) dV +
k

cP

∫
VP

∇2T dV

=
B.7, B.4

− ρ0

∫
SP

uT n dS +
k

cP

∫
SP

∇T n dS

=
∂x→∆x

− ρ0 [(uP Te − uW Tw) Sw + (wP Tt − wB Tb) Sb]

+
k

cP

[(
TE − TP
dPE

− TP − TW
dPW

)
Sw +

(
TT − TP
dPT

− TP − TB
dPB

)
Sb

]

Following eq. 4.37, the temperature of the control volume can be expressed as

Tn+1
P = TnP +

∆t

ρ0 VP

(
3

2
Rint, nT − 1

2
Rint, n−1
T

)
(4.38)

The boundary conditions are expressed for u, w, p and T . The fluid adheres perfectly to the walls
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(u, w = 0). Since the velocity is null, the pressure distribution is hydrostatic: the momentum equation

reduces to 0 = −∇p− ρ0 β (T − T0) g;8 projected on the x and z axes it becomes:

∂p

∂x
= 0,

∂p

∂z
= ρ0 β (T − T0) g (4.39)

The discretization of ∂p∂z at the top and bottom walls leads to

pn+1
T − pn+1

P

dPT
= ρ0 β

(
Tn+1
P − T0

)
g,

pn+1
P − pn+1

B

dPB
= ρ0 β

(
Tn+1
P − T0

)
g (4.40)

from which it is possible to extract the discretization coefficients. The boundary conditions for the tem-

perature, instead, are: at the west Tn+1
P = Th, at the east Tn+1

P = Tc, at the top Tn+1
P = Tn+1

B , at the

bottom Tn+1
P = Tn+1

T . Again, the discretization coefficients can be extracted.

Since the heat equation is discretized explicitly, an additional CFL condition for the energy equation

is set:

∆tk = 0.08 min

(
dew dns
k/ (ρ0 cP )

)
(4.41)

Hence, the final time step is ∆t = min (∆tc, ∆td, ∆tk).

Results

The study is performed for air at the reference temperature T0 = 300K: the air properties are taken

at this temperature from Eckert & Drake (1987) [57]. The Prandtl number of the fluid is Pr = 0.708,

essentially equal to the reference case.9

The west temperature is Th = 305, while the east is Tc = 295.10 This small ∆T guarantees the

possibility to use the Boussinesq approximation. At t = 0, the fluid has a temperature of 295K (as the

cold wall); although in the study only the steady-state results are compared with the benchmark solution,

this configuration was chosen to demonstrate the suitability of the code when applied to transients.

The meshes used are the same of the driven cavity problem. The number of internal nodes is 20×20

for Ra = 103, 40× 40 for Ra = 104 and 60× 60 for Ra = 105, 106. These numbers are the same used in

the meshes of De Vahl Davis; as it will be shown in the analysis of the results, they are enough fine to

supply correct solutions to the problem.

Nine parameters are analyzed: the absolute non-dimensional vorticity at the geometric center ψmid,

the maximum absolute non-dimensional vorticity ψmax and its location, the maximum non-dimensional

horizontal velocity umid on the vertical mid-plane and its coordinates x , z, the maximum non-dimensional

8The second derivatives of the velocity, that appear in the Laplacian of the momentum equation, are not necessarily equal to
zero. However, they are assumed to be negligible compared to the buoyancy forces.

9The decision of using the real air properties, that involves a slightly different Prandtl, is taken to be able to perform a more
consistent comparison with the non-Boussinesq fluid that will be analyzed in the next sections.

10Since the difference of the temperature of the two walls is relatively low, thermal radiation is neglected.
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vertical velocity wmid on the horizontal mid-plane and its location, the average Nusselt number Nu,

the Nusselt number along the vertical mid-plane Nu1/2, the Nusselt number Nu0 at the hot wall and

the maximum and the minimum Nusselt numbers Numax, Numin along the hot wall. The reference

dimensional parameters are the height H, the temperature ∆T = Th − Tc, the density ρ0 and the

thermal diffusivity α = mu
ρ cP

. The Nusselt number, which represents the non-dimensional heat transfer,

is defined locally as

Nu = −∂T̂
∂x̂

+ û T̂ (4.42)

where T̂ = T−Tc
Th−Tc , x̂ = x

D and û = uD ρ0 cP
k denote respectively the non-dimensional temperature, x

coordinate and horizontal velocity. Nu0 and Nu1/2 are obtained by integrating the local Nusselt along

the non-dimensional vertical line:

Nu0 = −
∫ 1

0

(
∂T̂

∂x̂
+ û T̂

)∣∣∣∣
x̂=0

dẑ, Nu1/2 = −
∫ 1

0

(
∂T̂

∂x̂
+ û T̂

)∣∣∣∣
x̂=1/2

dẑ (4.43)

Tab. 4.5 below shows a comparison between the benchmark solution [71] and the results obtained.

The reference paper uses a second-order Finite Difference Method (FDM) based on the false transient

Table 4.5: Boussinesq 2D DHC – comparison between the results obtained and the benchmark values.

Benchmark solution Results obtained
Ra Ra

103 104 105 106 103 104 105 106

|ψmid| 1.174 5.071 9.111 16.32 1.196 5.089 9.158 16.710
|ψ|max — — 9.612 16.750 — — 9.659 17.108
x, z — — 0.285, 0.601 0.151, 0.547 — — 0.283, 0.600 0.150, 0.550
umax 3.649 16.178 34.73 64.63 3.676 16.159 34.879 65.860
z 0.813 0.823 0.855 0.850 0.825 0.813 0.858 0.842

wmax 3.697 19.617 68.59 219.36 3.751 19.642 68.313 219.49
x 0.178 0.119 0.066 0.0379 0.175 0.113 0.0583 0.0417

Nu 1.118 2.243 4.519 8.800 1.124 2.259 4.564 9.095
Nu1/2 1.118 2.243 4.519 8.799 1.124 2.259 4.564 9.095
Nu0 1.117 2.238 4.509 8.817 1.159 2.266 4.566 9.095

Numax 1.505 3.528 7.717 17.925 1.638 3.589 7.931 19.372
z 0.092 0.143 0.081 0.0378 0.025 0.138 0.075 0.025

Numin 0.692 0.586 0.729 0.989 0.704 0.584 0.723 0.952
z 1 1 1 1 0.975 0.988 0.992 0.992

method.

The results obtained are essentially consistent with the benchmark solution for every parameter at

every Ra. Comparing them to the work of the other authors resumed in the document, it is possible to

see that all the results lie within the range of solutions of each variable. The differences can be due to

the different method used, mesh configuration and in a minor way the different Pr number. The stream-

function, the vorticity and the temperature field maps – shown in fig. C.9, C.10 and C.11 respectively –

are in accordance with the reference article as well. The isotherms of fig. C.11 for Ra = 103 are almost

vertical, although the hot fluid tends to concentrate on the higher part of the cavity. The streamlines
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suggest that the fluid is circulating homogeneously throughout the whole cavity. As the Ra grows, the

hot fluid tends to stratify: hot air rises, due to the buoyancy forces, while cold air maintains near the

bottom of the cavity. For Ra = 104, the flow stops moving in circles: near the center, the fluid flows

around an eight-like shape; this helps to create two zones with |ψ|max. The reason why the fluids move

around this path is given by the fact that heated air rises until it encounters almost equally-hot air floating

that does not naturally descends. Therefore, the heated air has to deviate to get inserted in the layers of

the fluid that have its same temperature.

In the cases of Ra = 105, 106 a layer characterized by a high temperature gradient can be pointed

out. This layer is characterized by high diffusion and low convection. The velocity within the layer is

low: being null at the wall, it rapidly rises to a maximum and then descends gradually. The maximums

shift towards the walls as the Rayleigh number rises: this can be viewed in fig. C.12 and tab. 4.5. The

location of wmax shows a correlation with the fourth power of the Rayleigh number ∆x ∝ Ra1/4.

Meshes finer than the ones used to show the results in tab. 4.5 were tried. The values at the steady

state conditions were slightly different, but no significant alteration was found. The velocity and the

temperature along the mid-axes were compared as well, and the curves were overlapping.

4.2.2.B Fluid with variable thermophysical properties, 2D flow

In this section, air is no longer considered as a Boussinesq fluid. Its thermophysical properties are

calculated by means of correlations extracted from Eckert & Drake (1987) [57], and reported in sec. B.5.

The great advantage of this approach is that its validity is guaranteed for a much wider range of ∆T : the

correlations used are valid from 100K to 1300K, a range expected to cover all the temperatures arising

in the natural convection in CRSs.

Although the Boussinesq approximation is no longer used, density is still assumed to be constant

except in the buoyancy forces: the assumption of incompressible flow, that makes eq. 3.8 be still valid,

permits to maintain the FSM approach. The fact that the fluid can be assumed as incompressible is a

consequence of the fact that the natural convection analyzed involves low Mach numbers (Ma < 0.3).

Although eq. B.17a shows a dependence on the pressure, the Boussinesq approach showed that

for the problem studied pmax−pamb
pamb

≈ 10−8 (at steady state). Therefore, pressure variations for the

calculation of density can be neglected: ambient pressure is considered as the input of the density

correlation (that must be taken into account in the calculation of ρ in the buoyancy forces).

The specific heat, as shown by eq. B.17c, shows only a slight dependence on the temperature. In

order to reduce the computational cost of the problem and avoid the calculation of the property for every

node, cP is considered constant and calculated at T0.
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Resolution of the governing equations

The momentum equation for the fluid considered is expressed by eq. 3.9. The viscous term is

elaborated:

∇ ·
[
µ
(
∇u +∇uT

)]
= ∇ ·

[
µ

(
∂u
∂x

∂u
∂z

∂w
∂x

∂w
∂z

)
+ µ

(
∂u
∂x

∂w
∂x

∂u
∂z

∂w
∂z

)]
=
proj.

{
∇ · (µ∇u) +∇ ·

(
µ ∂u
∂x

)
∇ · (µ∇w) +∇ ·

(
µ ∂u
∂z

) (4.44)

The x-axis is analyzed: the volume integration of the x-axis projection of eq. 4.44 leads to

∫
VPx

∇ ·
[
µ

(
∇u+

∂u

∂x

)]
dV =

B.7

∫
Sx

[
µ

(
∇u+

∂u

∂x

)]∣∣∣∣
fx

n dS =

∫
Sx

[
µ

(
2
∂u

∂x
,
∂u

∂z
+
∂w

∂x

)]∣∣∣∣
fx

n dS

(4.45)

The term is rearranged and discretized

2

(
µex

∂u

∂x

∣∣∣∣
ex

− µwx
∂u

∂x

∣∣∣∣
wx

)
Sw +

[
µtx

(
∂u

∂z
+
∂w

∂x

)∣∣∣∣
tx

− µbx
(
∂u

∂z
+
∂w

∂x

)∣∣∣∣
bx

]
Sbx

=

(
µE

uE − uP
dPEx

− µP
uP − uW
dPWx

)
Sw +

[
µte

(
uT − uP
dPT

+
wE − wP
dPE

)
− µbe

(
uP − uB
dPB

+
wBE − wB

dPE

)]
Sbx

(4.46)

The quantities µte and µbe represent the viscosity calculated with the correlation for the temperatures

Tte and Tbe respectively at the top-east and bottom-east corner of the control volume P .11 The consid-

erations made for the x-axis are valid for the z-axis.

Eq. 4.46 is then inserted in eq. 4.28. The rest of equations are the same of the Boussinesq fluid

study, except that Rintw = Rint, dcw − ρ g VPx , where ρ is now calculated with corr. B.17a.

The diffusive term of the Nusselt number −∂T̂∂x̂ is now defined as −k̂ ∂T̂
∂x̂ , where k̂ = k

k0
is the non-

dimensional conductivity.

Results

The results of the four Rayleigh cases are compared with the Boussinesq fluid study in tab. 4.6.

The results are almost the same: the only visible difference can be found in the coordinates of |ψ|max.

However, this is a “false” difference: as shown previously in fig. C.9(b), the stream function has essen-

tially two maximums; in this case, the coordinates of the other maximum were chosen.12 The maps are

virtually equal to the previous ones.

An additional simulation is performed to study a DHC with large temperature differences (∆T =

720K), to verify the variable thermophysical properties approach outside the small range of temperatures

11Tte is calculated with a double interpolation on the x and y direction performed with the SMART scheme.
12It is possible, though, that a certain grade of symmetry has been lost, since the properties now are variable. For this restricted

range of temperatures, though, the maps still appear symmetric.
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Table 4.6: Variable thermophysical properties 2D DHC – comparison with Boussinesq fluid results.

Boussinesq fluid Variable thermophysical properties
Ra Ra

103 104 105 106 103 104 105 106

|ψmid| 1.196 5.089 9.158 16.710 1.197 5.090 9.157 16.707
|ψ|max — — 9.659 17.108 — — 9.663 17.109
x, z — — 0.283, 0.600 0.150, 0.550 — — 0.283, 0.600 0.850, 0.450
umax 3.676 16.159 34.879 65.860 3.664 16.099 34.885 65.686
z 0.825 0.813 0.858 0.842 0.825 0.813 0.858 0.842

wmax 3.751 19.642 68.313 219.49 3.720 19.532 68.000 219.19
x 0.175 0.113 0.0583 0.0417 0.175 0.113 0.0583 0.0417

Nu 1.124 2.259 4.564 9.095 1.124 2.259 4.564 9.095
Nu1/2 1.124 2.259 4.564 9.095 1.123 2.259 4.564 9.095
Nu0 1.159 2.266 4.566 9.095 1.160 2.266 4.566 9.094

Numax 1.638 3.589 7.931 19.372 1.651 3.594 7.953 19.438
z 0.025 0.138 0.075 0.025 0.025 0.138 0.075 0.025

Numin 0.704 0.584 0.723 0.952 0.707 0.589 0.726 0.955
z 0.975 0.988 0.992 0.992 0.975 0.988 0.992 0.992

previously analyzed. The results using the Boussinesq and the non-Boussinesq approach are compared

with Le Quéré et al. (2005) [2] and found out to be consistent, as shown by tab. 4.7.

Table 4.7: Nusselt at the hot wall – 2D DHC with a large temperature difference using the variable thermophysical
properties approach. Comparison with Le Quéré et al.

Lé Queré Results obtained

Bouss non-Bouss Bouss non-Bouss

Nu0 1.117 8.817 1.159 9.095

4.2.2.C Fluid with variable thermophysical properties, 3D flow

The study performed in sec. 4.2.2.B is extended to the three dimensions. The secondary horizontal

component of the velocity v and the nodes N and S are introduced. A cubic cavity is considered. The

north and south walls are assumed to be adiabatic, and the boundary conditions become Tn+1
P = Tn+1

S

and Tn+1
P = Tn+1

N respectively.

The governing equations are not analyzed in detail, since their final form is unaltered respect the 2D

case, except that the additional discretization along the y-axis is included. After defining ∆x := 3
√
VP ,

the CFL conditions are reformulated in the following form:

∆tc = 0.35 min
(

∆x
|u|

)
∆td = 0.08 min

(
ρ∆x2

µ

)
∆tk = 0.08 min

(
∆x2

k/(ρ0 cP )

)
 ∆t = min (∆tc, ∆td, ∆tk) (4.47)
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Mesh definition

The numerical methodology is the same of the 2D case except for the mesh definition. The biggest

issue of 3D analysis is that whenever a 2D mesh is projected along the third direction, the total number

of nodes grows dramatically. To understand this problem, the meshes used in the 2D problem can be

analyzed. The mesh used for Ra = 104 was a 20× 20 mesh. A 20× 20× 20 mesh used in the 3D case

would employ 8000 nodes, comparable to a ≈ 89× 89 2D mesh. In the case of Ra = 106, a 60× 60× 60

would have the same number of nodes of a ≈ 465× 465 2D mesh. Such meshes, coupled with the CFL

conditions for the time step (eq. 4.47), would require a large amount of time to compute the solution. It

is then necessary to change the mesh structure to reduce the number of nodes per direction.

The criterion used to choose the mesh density in the 2D DHC was based on the fact that the mesh

needed to be fine enough to predict the properties distribution in the diffusive layer at the walls. That

zone, in fact, is characterized by elevated gradients, causing a brusque change of the properties along

the normal direction: for this reason, the assumption of FVM that the thermophysical properties are

constant within the control volume can only be valid if the mesh is fine enough. If the mesh is too

coarse, moreover, the interpolation of the fluxes at the faces can result rather imprecise. The resolution

of the 2D problem, however, demonstrated that the zone far from the wall is characterized by relatively

high stability and limited gradients of temperature and velocity.

For this reason, a hyperbolic mesh is designed. The mesh is built so that the nodes density is higher

close to the walls, and coarser in the center of the cavity. Grid spacing is performed with the help of a

hyperbolic-tangent function. The x-axis west faces definition is shown below:

xw[i] =
D

2

1 +

tanh

[
γ

(
2
i− 1

N
− 1

)]
tanh γ

 (4.48)

The node density at the walls rises with the concentration factor γ, whereas at the center of the cavity

it decreases. i and N represent respectively the i-th node and the total number of nodes along the

x-direction.

The number of nodes and the concentration factor are selected so that the diffusive layer is ade-

quately resolved. In particular, there are two diffusive layers: a thermal boundary layer, characterized

by conductive heat transfer, and a viscous boundary layer, characterized by high velocity diffusion. By

definition, given the reference properties T∞ and w∞, the thermal and viscous boundary layers are –

respectively – the regions close to the walls in which T ≤ 0.99T∞ and |w| ≤ 0.99 |w∞| [73].13 T∞ and

w∞ are defined as the temperature and velocity where the influence of the boundaries is null. The two

13In this case, however, the velocity decreases after a maximum, so the definition cannot be used. The viscous boundary layer
is the region that starts on the wall and ends at the the first point after xwmax such that wmax−w

wmax−w∞
= 0.99.
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boundary layers can be seen, for example, in fig. C.12(d). The temperature distribution in the thermal

boundary layer is monotonic, while the velocity in the viscous boundary layer reaches a maximum and

then decreases: in this case w∞ = 0 and T∞ = T0. In the meshes used in the 2D problem, the viscous

layer portion before the maximum was well-resolved with at least four grid points. In the 3D problem

resolution the selection of the concentration parameter and the number of nodes will guarantee that the

maximum vertical velocity is located at least at the fourth node from the wall (giving at least seven/eight

nodes within the boundary layers).

Results

The results of the 2D and 3D non-Boussinesq fluid problems are compared in tab. 4.8. The mesh is

Table 4.8: Variable thermophysical properties – comparison between 3D DHC and 2D DHC results.

2D analysis 3D analysis
Ra Ra

103 104 105 106 103 104 105 106

umax 3.664 16.099 34.885 65.686 3.527 16.564 38.087 76.958
y — — — — 0.525 0.527 0.697 0.757
z 0.825 0.813 0.858 0.842 0.825 0.840 0.873 0.863

vmax — — — — 0.174 2.146 9.535 23.950
wmax 3.720 19.532 68 219.19 3.522 18.813 68.564 234.99
x 0.175 0.113 0.058 0.042 0.175 0.112 0.086 0.039
y — — — — 0.525 0.739 0.873 0.918

Nu 1.124 2.259 4.564 9.095 1.076 2.098 4.363 8.799
Nu1/2 1.123 2.259 4.564 9.095 1.075 2.098 4.363 8.798
Nu0 1.160 2.266 4.566 9.094 1.080 2.099 4.363 8.800

Numax 1.651 3.594 7.953 19.438 1.780 3.773 8.131 19.088
y — — — — 0.025 0.473 0.622 0.796
z 0.025 0.138 0.075 0.025 0.025 0.112 0.0862 0.0394

Numin 0.707 0.589 0.726 0.955 0.720 0.542 0.647 0.797
y — — — — 0.525 0.160 0.946 0.0070
z 0.975 0.988 0.992 0.992 0.975 0.978 0.991 0.993

20× 20× 20 up to Ra = 105, and 30× 30× 30 for Ra = 106. γ1, γ2, γ3 are all equal and have values of

0, 0.5, 1.5, 1.2 for Ra = 103, Ra = 104, Ra = 105, Ra = 106.

Comparing the results, it is possible to see that umax becomes a little higher, especially for Ra =

105, 106. This difference is due to a different behavior of the fluid when the third direction is included: the

maximum horizontal velocity does not occur at the mid y-normal plane, but between that plane and the

lateral walls. The maximum velocity component vmax, introduced in the 3D analysis, demonstrates to be

rather lower compared to umax and wmax.14 The location of umax in the z-coordinate direction is close

to the one obtained in the previous analysis. The observations made for umax are also valid for wmax;

in this case, though, the shift along the y-coordinate starts at Ra = 104. Nu, Nu1/2, Nu0 and Numin

become a little lower, while Numax increases (except for the highest Rayleigh).
14It is important to remember that umax and wmax are the maximums of the mid x-normal and z-normal planes, whereas vmax

is the global maximum of the cavity. The u and w global maximums occur at shifted position, and they are higher: uM = 121.977
and wM = 235.71 for Ra = 106.
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The higher value of the maximums of the velocity components can be explained by the fact that, at

the edges, the conductive layer expands more, as shown in fig. 4.7. The fluid located next to the edges

Figure 4.7: 3D DHC temperature map (variable thermophysical properties), isothermal surfaces for Ra = 106.

is influenced by both the walls of the edge, so its velocity is raised. For low Rayleigh number, this effect

is partially balanced by the fact that all the walls are relatively close and lower the fluid velocity.

Fig. C.13 shows that the y-normal mid planes of the cavity are almost equal to the solution of the 2D

cavity for Ra = 103, 106.

The Nusselt values at the hot wall and the mid vertical maps for the four configurations are consistent

with the 3D study of Wang, Zhang & Guo (2017) [74], as shown in tab. 4.9 and fig. C.14.

Table 4.9: Comparison of the Nusselt number at the hot plate with the solution given by Wang et al.

Ra

103 103 103 106

Nu0
Whang et al. 1.070 2.054 4.325 8.543

Developed code 1.080 2.099 4.363 8.800

4.3 Turbulent Flow

The flow of a fluid is called turbulent when it is characterized by sudden and chaotic changes in the

velocity and pressure fields. The random movement of its particles has an influence on the heat transfer

process, since parts of the fluid at different temperatures are continuously mixed. Turbulence arises

when the kinetic energy of the fluid is so high that it cannot be damped by its viscosity. The instability of

the fluid flow is a consequence of the nonlinear term of the momentum equation. Turbulence is strictly

related with boundary conditions, since they influence locally the pressure and velocity field.
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Turbulence will be analyzed as applied to the previous problems: the driven cavity and the differen-

tially heated cavity. However, it is firstly introduced with an illustrative problem that is useful to show its

main characteristics: the Burgers’ equation.

4.3.1 Burgers’ equation

The 1D Burgers’ equation can be viewed as a simplified model of the Navier-Stokes equation:

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
+ f −→ ∂tu+ u ∂xu =

1

Re
∂xxu+ f (4.49)

f is the forcing term of the equation. The equation is projected in the discrete Fourier space, defining

u (x, t) =
∑N
K=−N ûk (k, t) eikx (where N is the cut-off frequency):

∂tûk +
∑
k=p+q

ûP i q ûq = − k
2

Re
ûk + Fk, k = −N, . . . , N (4.50)

where Fk = 0 for k > 1 and F1 such that ∂tû1 = 0 for t > 0. The kinetic energy equation for the k-th

Fourier mode is obtained multiplying eq. 4.50 by ûk and adding its complex conjugate.15

∂tEk = −2 k2

Re
Ek︸ ︷︷ ︸

diff.

−
[
ûk Ck (ûp, ûq) + ûk Ck (ûp, ûq)

]
︸ ︷︷ ︸

conv.

+ûk Fk + ûk Fk (4.51)

where Ck (ûp, ûq) ∈ C is the convective contribution Ck (ûp, ûq) =
∑
k=p+q ûp i q ûq. Eq. 4.51 illustrates

how energy transfers from large scales of motion to small scales. The diffusive term is responsible for

kinetic energy dissipation: it grows with the square of the number of the mode k, so it is higher for higher

frequencies (associated to smaller scales of motion). The higher the Reynolds, the lower the damping

effect. The convective term, instead, is responsible for transporting energy from larger to smaller scales

and vice versa; this process is known as energy cascade. The diffusive and convective terms in the

Navier-Stokes equation have the same role: the diffusive term operates at the smaller scales (i.e. at

smaller eddies, in case of turbulence), where the Laplacian of the velocity is greater, and damps the

energy, while the non-linear convective term transports kinetic energy between scales of different size.

Problem definition

The goal is to solve the Burgers’ equation for Re = 40. No mean flow is assumed (û0 = 0). The initial

condition is ûk = k−1.

15The kinetic energy is defined as Ek = ûk ûk, so ∂tEk = ∂t
(
ûk ûk

)
= ûk ∂tûk + ûk ∂tûk
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Resolution

The mode k = 0 is not resolved, since û0 = 0. The negative modes are obtained directly from the

positive, since ûk = û−k: this condition must be fulfilled to have u(x, t) ∈ R. The forcing term makes

that û1 = k−1∀t. Eq. 4.50 is discretized with a second-order explicit Adams-Bashforth method.

un+1
k − unk

∆t
= R

(
kn+1/2

)
=

3

2
R (kn)− 1

2
R
(
kn−1

)
, k > 1 (4.52)

where R (k) = − k2

Re ûk − Ck (ûp, ûq). A CFL-like condition must be set: ∆t < 0.08 Re
N2 .

The results of the problem are shown in fig. 4.8.

One step further: the Large Eddy Simulation model

The Large Eddy Simulation (LES) model is a mathematical model used to describe turbulence. The

difference with a DNS approach is that LES does not solve all the scales of motion: the large scales are

solved, while the small scales are modeled. The advantage of LES models is that they can reduce signif-

icantly the number of nodes of the mesh, and consequently the computational time required (especially

in explicit methods, where a coarser mesh also involves a higher time step).

A spectral eddy-viscosity model developed by Métais & Lesieur (1992) [75] is shown below: the

velocity in eq. 4.49 is filtered as

∂tu+ u ∂xu = ν ∂xxu+ f − ∂xτ (u) (4.53)

τ (u) is called subfilter tensor. τ (u) can be obtained by the following formulas:

τ (u) = νt ∂xu (4.54a)

νt

(
k

N

)
= ν+∞

t

(
EN
N

)1/2

ν∗t
k

N
(4.54b)

ν+∞
t = 0.31

5−m
m+ 1

√
3−mC

−3/2
K (4.54c)

ν∗t

(
k

N

)
= 1 + 34.5 e−3.03 (N/k) (4.54d)

where νt is the eddy viscosity, EN is the energy associated to the N -th mode, m is the opposite of the

slope of the energy spectrum and CK is the Kolmogorov constant. For the Burgers’ equation, m ≈ 2 and

CK ≈ 0.4523. The subfilter tensor can be merged with the viscosity ν of eq 4.53 as νeff (k) = ν + νt (k).

Results

The results obtained at the steady state are presented in fig. 4.8. N = 100 solves the equation with
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Figure 4.8: Kinetic energy over Fourier mode – solution of the 1D Burgers’ equation.

enough modes to provide a precise result. The standard solution for N = 20 starts oscillating at its

highest frequencies. The model demonstrates that there is a surplus of energy that accumulates on

these frequencies and cannot be passed to higher ones to be damped by the viscosity. The LES case,

instead, provides an almost realistic result also for N = 20: although energy cannot be dissipated in the

small scales, it is artificially dispersed by the effective viscosity νeff of the spectral model. The figure

also shows how the impact of the eddy viscosity is enhanced by a lower Kolmogorov constant.

4.3.2 Near-wall mesh definition in turbulent flows

The near-wall region in turbulent flow has a rather different nature respect to the rest of the domain.

Turbulence is characterized by chaotic flow and isotropic energy transport through convection. The

wall boundary layer is characterized by geometry dependence, anisotropic eddy propagation and high

diffusion. The near-wall region has to be well-designed, since it is the zone where the largest amount

of energy is dissipated. The near-wall region can be described using non-dimensional wall coordinates.

Two quantities can be defined: the non-dimensional average velocity u+ flowing parallel to the surface

and the non-dimensional wall coordinate y+ perpendicular to the wall [76].16

y+ =
y uτ
µ/ρ

, u+ =
u

uτ
, where uτ =

√
τw
ρ
, τw = µ

∂u

∂y

∣∣∣
y=0

uτ is the shear velocity, and τw is the wall shear stress. The near-wall region dependence between u+

and y+ is shown in fig. 4.9. Three zones can be distinguished:

viscous sublayer region characterized by linear growth of the velocity, due to high viscosity (y+ < 5)

buffer layer transition region between viscous and log-law region (5 < y+ < 30)
16u+ is averaged in time since in a turbulent flow the velocity is not constant. However, especially in the part of the region

closest to the wall, the flow is laminar due to the high viscous forces, and u+ coincides with the instant velocity.
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Figure 4.9: Velocity profiles in the inner layer expressed in wall-coordinates. Figure retrieved from Wikipedia [76].

log-law region zone characterized by a logarithmic growth of the velocity (y+ > 30)

In order to predict the distribution of the quantities of interest in the near-wall region, all the zones are

computed with a sufficient number of nodes. The most critical zone is the first, since it is the thinnest.

The approach used in this work has been described by Zhang et al. (2015) [77]: in order to perform a

consistent wall analysis, the first node must occur at a distance y+ <= 1. This method will be used in

the analysis of the DHC problem.

4.3.3 Driven Cavity – Turbulent Flow

Although the driven cavity problem has been studied by many authors, there is still uncertainty in the

identification of the Re at which transition to instability can be observed. In the reference paper analyzed

in sec. 4.2.1 the authors were able to obtain steady state results up to Re = 10000. Peng, Shiau &

Hwang (2003) [78] obtained the first Hopf bifurcation leading to a periodic state at Re ≈ 7500. Erturk,

Corke & Gökçöl (2005) [79] were able to solve the steady state equation up to Re = 21000. Bruneau

& Saad (2006) [80] evaluated the first Hopf bifurcation at Re ≈ 8000, looking if a small perturbation

added to the steady state eventually dissolves. In this study, turbulence appears between Re = 7500

and Re = 10000.

Six Reynolds values are investigated: Re = 10000, 12500, 15000, 17500, 20000, 21000. It is not possi-

ble to use the approach shown in sec. 4.3.2 to the driven cavity problem: a hyperbolic mesh of 256× 256

70



nodes with γ = 2.5 still cannot keep the location of the first node below y+ = 1. This is due to the fact

that the wall shear stress at the top-right corner goes to infinite when the mesh is finer.17 Therefore, the

mesh suitability is verified comparing the results from an external reference. Re = 10000 is solved with

a 128× 128 constant mesh, while the other cases are solved with a 256× 256 constant mesh.

The turbulent driven cavity is characterized by a periodical oscillation of the velocity and pressure

fields that varies with the Reynolds number. After an initial chaotic transient, the flow reaches a statistical

steady state, as shown in fig. 4.10(a) by the plot of the horizontal velocity in correspondence of five

fictitious probes at different locations for the case Re = 10000. It is possible to see that the oscillation

becomes stable at t ≈ 1000 s. Fig. 4.10(a), however, only shows points at a distance of 40 seconds; a

magnification of the region between t = 2100 s and t = 2130 s is shown in fig. 4.10(b). The oscillations

(a) Whole time domain considered (b) Magnification for t ∈ (2100, 2130 s), south-
west probe

Figure 4.10: Local oscillation of the horizontal component of the velocity at different locations.

shown in the right figure have a frequency of 0.58Hz, which is close to the value of 0.61Hz identified by

Bruneau & Saad. The effect of these oscillations on the flow can be visualized by the stream function

map of the cavity: some significant captures are shown in fig. C.15. The frames at t = 401 s and t = 407 s

are almost equal, showing that the periodicity is equal throughout the whole cavity. The instant frames

are also useful to understand the nature of the eddies: comparing the frames at t = 401 s and t = 406 s,

it is possible to see that the two eddies located at the left corners periodically splits and then reunite

again. Average solutions of the stream function and the velocities along the mid vertical and horizontal

axes are computed, evaluating a sufficient period that permits to neutralize the oscillations. For the case

Re = 10000, the averaging has been performed between t = 1440 s and t = 2160 s (the region delimited

17To understand this issue, it is possible to focus on the north-east control volume: the mass flow uw entering its west face must
be equal to the one leaving from the south face vs (since the mass flow onto two other faces is null due to presence of the physical
walls). The two shear stresses at the north and east faces are τwN = µ

∣∣∣uN−uwdy

∣∣∣ and τwE = µ
∣∣∣ vE−vsdx

∣∣∣ where uN is the north
wall velocity, while vE is the east wall velocity. Since uN 6= vE , the two numerators cannot be equal to zero simultaneously. If dx
and dy go to zero, one of the two fractions diverges.

71



by the vertical line in fig. 4.10(a)). The results are shown in fig. C.17. From fig. C.17(a) it is possible

to identify the three secondary eddies that arise for Re = 10000 in both corners of the south wall, in

accordance with the steady-state solution of Erturk et al.

The periodicity of the flow repeats for the other Reynolds cases. The frequencies of the smallest

oscillation are f = 0.58, 0.68, 0.65, 0.61Hz, for Re = 10000, 12500, 15000, 17500 respectively; from Re =

20000 onwards the oscillations become more unstable, and it is no longer possible to detect a single

frequency. For Re = 15000, the two inner secondary eddies located in the south-east corner start

periodically splitting as well.

The results of the average horizontal velocity along the mid vertical axis are presented in fig. C.16,

compared with the steady state solution of Erturk et al. The results appear quite similar to the reference

case, although some differences can be found in the region near the north and south walls: these

differences are somehow expected since the turbulent nature of the fluid has a large impact on the outer

part of the largest eddy, that coincides with the boundary layer region next to the center of every wall.

Although the results seem to provide a realistic solution, a computation with a finer mesh is not

carried out since the computational cost is too high. The reference papers used finer meshes up to

1024× 1024 nodes and high-order schemes to validate their results. Therefore, the results obtained are

likely to be quite less accurate respect to the references. Mesh refinement is still needed in order to

confirm the suitability of the meshes for the study of turbulence in the driven cavity problem. On the

other hand, the results obtained are similar to the reference solutions enough to affirm that the code

developed provides a correct computational framework for the resolution of the problem.

4.3.4 Differentially Heated Cavity – Turbulent Flow

Although the third dimension should be always considered in fluid dynamics (since the motion of a

fluid can be described in 2D only under some approximations), the most relevant differences between 2D

and 3D motion arise when turbulence is involved. Turbulence, in fact, is isotropic, and always develops

in the three directions regardless of the boundary conditions. However, as explained in sec. 4.2.2.C,

the computational cost grows dramatically with 3D analysis, especially with turbulent flows, that request

a higher number of increasingly small control volumes and, as a consequence of the CFL conditions,

a lower time step. Given the high CPU cost of 3D, a first 2D approach is presented: the lower time of

computation, in fact, makes it possible to analyze two cases: Ra = 6.4 · 108 and Ra = 2 · 109. The 3D

analysis, instead, is restricted to Ra = 6.4 · 108, since the elevated computational time does not permit

to carry out simulations at Ra = 2 · 109.

The results obtained are compared with the reference work of Trias, Gorobets, Soria & Oliva (2010)

[81,82]. Trias et al. analyzed a vertical DHC of aspect ratio Az = 4 for cases ranging from Ra = 6.4 · 108
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to Ra = 1011.18 The authors performed a 3D simulation. Differently from this thesis, they assumed

a Boussinesq fluid. In the present work, instead, the variable termophysical properties approach is

used, according to what presented in the laminar flow. Trias et al. considered Periodic Boundary Condi-

tions (PBC) at the secondary vertical walls: the flow is extended indefinitely along the y direction being

mirrored from one wall to the other. In the present work, instead, the additional walls are considered

physically present and adiabatic, according to the approach used in the laminar flow.

Results

Eight time-averaged parameters are compared: the Nusselt number at the hot wall Nu0, the maxi-

mum and minimum Nusselt numbers at the hot wall Numax and its z location, the maximum velocities

at the mid horizontal plane umaxxy and wmaxxy and their x location, the maximum velocities and the

temperature at the mid x-perpendicular vertical plane umaxyz , wmaxyz and Tmaxyz and their z location.

The average Nusselt of the whole cavity is not considered, since it is assumed to be equal to the Nusselt

at the hot wall (as demonstrated by the previous analyses). Moreover, the maximum first node location

in wall non-dimensional coordinates ∆y+
max is reported. The computation of average values, as in the

driven cavity problem, is performed as soon as the system reaches a statistical steady state. The com-

parison between the reference case and the results computed are shown in tab. 4.10. In the 2D case,

Table 4.10: Turbulent DHC – comparison between reference and the variable thermophysical properties models
developed.

3D Reference 2D results 3D results
Ra Ra Ra

6.4 · 108 2 · 109 6.4 · 108 2 · 109 6.4 · 108

Nu0 49.24 66.63 49.24 65.92 48.19

Numax 171.89 260.49 174.03 252.38 197.32
z 3.63 · 10−3 0 3.66 · 10−3 2.37 · 10−3 4.48 · 10−4

umaxxy 9.02 · 10−4 6.36 · 10−4 − − 3.71 · 10−3

x 2.22 · 10−1 2.29 · 10−1 − − 1.75 · 10−2

wmaxxy 2.22 · 10−1 2.22 · 10−1 2.23 · 10−1 2.23 · 10−1 2.74 · 10−1

x 7.26 · 10−3 5.76 · 10−3 8.03 · 10−3 5.60 · 10−3 8.03 · 10−3

umaxyz 2.72 · 10−2 1.76 · 10−2 1.89 · 10−2 1.92 · 10−2 7.62 · 10−2

z 9.52 · 10−1 9.57 · 10−1 9.51 · 10−1 9.51 · 10−1 9.75 · 10−1

wmaxyz 4.47 · 10−2 1.67 · 10−2 − − 2.76 · 10−2

z 6.91 · 10−2 6.01 · 10−2 − − 4.13 · 10−2

Tmaxyz 8.91 · 10−1 8.93 · 10−1 8.92 · 10−1 8.84 · 10−1 9.07 · 10−1

z 9.85 · 10−1 1 1 1 8.79 · 10−1

∆y+max − − 9.85 · 10−1 8.83 · 10−1 9.28 · 10−1

properties are considered constant along the third direction (i.e. umaxxy ≡ umaxx etc.). In the 3D case, a

horizontal aspect ratio Ay = 2 (the ratio of the depth to the length) is assumed, as in the reference study.

All the results seem to be rather concordant with the benchmark solution, despite the differences in

18The aspect ratio, in this case, is the ratio of the height to the length – respectively z to x coordinate.
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boundary conditions and fluid model. The 2D case, in particular, shows to be suitable to the resolution

of the DHC up to Ra = 2 · 109: the differences with the 3D reference case are minimum. The 3D com-

putation, instead, is characterized by some dissimilarities, especially regarding maximum and minimum

values. This behavior could be a consequence of the presence of adiabatic vertical walls, that still play a

crucial role for a Rayleigh close to the critical one determining transition between laminar and turbulent

flow. In fact, the proximity of these secondary walls could prevent the turbulent eddies from expanding

isotropically: for such a Rayleigh, the vortex magnitude is still elevated. If this supposition is correct, the

influence of the secondary vertical walls is expected to diminish as Ra increases.

Fig. 4.11 shows the average temperature field for the 2D and 3D resolution of the DHC. The mid

(a) Ra =
6.4 ·
108, 2D

(b) Ra =
2 · 109,
2D

(c) Ra =
6.4 · 108,
3D mid
plane

(d) Ra = 6.4 · 108, 3D side view

Figure 4.11: Time-averaged temperature maps for the turbulent differentially heated cavity.

y-normal plane of the 3D cavity is rather different from the 2D temperature map. This difference is due

to the fact that the eddy formation in the 3D case is not completely chaotic: periodically, three main

vortexes keeps on forming in three approximately fixed locations. The three vortexes can be pointed out

in the second hottest isotemperature surface of fig. 4.11(d). This nature cannot obviously predicted by

the 2D computation, so the maps shown in fig. 4.11(a) and fig. 4.11(c) are different. The fluid is fully

stratified outside the boundary layer and the eddy formation zone. The thermal boundary layer shrinks

as the Rayleigh increases, confirming the trend started with the laminar flow; fig. C.18 shows the mid z
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line for the 2D computation, showing that the phenomenon is valid also for the viscous boundary layer.

Towards a LES model for the Differentially Heated Cavity

LES has been already presented in sec. 4.3.1. The main advantage over a DNS is the modelization

of the small-scale eddies, that permits to choose a much coarser mesh, and reduce dramatically the

computational cost of the problem. When turbulence arises, DNS becomes prohibitive for most industrial

simulation applications, since the computational time becomes too elevated. Therefore, LES is usually

exploited to overcome this issue. In this section, the application of various LES models to the differentially

heated cavity problem is presented. Since LESs work appropriately only if the three dimensions are

considered, the model will be applied to the already-presented 3D DHC.

The main approach of LES, as already explained in sec. 4.3.1, consists in spacial filtering the Navier-

Stokes equations. The subfilter tensor τ (u) is introduced to act as a energy-dissipating factor at small

scales. The most used closure model assumption is

τ (u) ≈ −2 νe S (u) (4.55a)

νe = (Cm ∆)
2
Dm (u) (4.55b)

where S (u) = 1
2

(
∇u +∇uT

)
is the rate-of-strain tensor, νe is the eddy viscosity, Cm is the model

constant, ∆ is the subgrid characteristic filtering length, andDm (u) is the differential operator associated

to the model. In this work, the latter is defined for a family of eddy-viscosity models that depend on five

invariants, according to Trias, Folch, Gorobets, & Oliva (2015) [83]: the Smagorinsky model (1963)

[84], the Wall-Adapting Local Eddy (WALE) model (1999) [85], the Vreman’s model (2004) [86] and the

Verstappen’s model (2011) [87]. The five invariants are tensors based on the 3D velocity field:

{
QG, RG, QS , RS , V

2
}

where QA = 1
2

{
tr2 (A)− tr

(
A2
)}

and RA = det A denote the second and third invariant of the generic

tensor A. QG and RG are referred to the tensor G (u) = ∇u, while QS and RS to S (u). The last

invariant is defined as V 2 = 4
[
tr
(
S2 Ω2

)
− 2QS QΩ

]
where Ω = G − S. The model parameters are

shown in tab. 4.11. The subgrid length used is ∆ = 3
√
VP , being VP the volume related to the node P .

Although the last three models are more suitable to solve problems highly dependent on boundary

conditions, the C++ code developed does not to run for them (probably due to some mistake done in the

writing process), and the lack of time available does not permit to point out the cause. The only working

code is the one related to the Smagorinsky model. The great limitation of the Smagorinsky model is

that the damping effect it involves does not vanish in the near-wall regions, where the flow is laminar:

this causes an overdamping that provides an unrealistic computation result whenever physical boundary
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Table 4.11: LES models parameters definition – differential operator and model constant.

Model Dm (u) Cm

Smagorinsky 2 (−QS)1/2 0.165

WALE

(
V 2/2 + 2Q2

G/3
)3/2

(−2QS)5/2 +
(
V 2/2 + 2Q2

G/3
)5/4 0.596

Vreman’s

[
V 2 +Q2

G

2 (QG − 2QS)

]1/2
0.266

Verstappen’s −|RS |/QS 0.527

conditions are present.

The computation run for the DHC confirms this effect: both in Ra = 6.4 ·108 and Ra = 2 ·109, the flow

of the fluid stabilizes and reaches the steady-state. This is a physical nonsense, as DNSs demonstrated

that the transition to turbulence occurs for Ra ∈
(
1÷ 5 · 108

)
. The steady-state solutions of the LES is

shown in fig. 4.12 for illustrative purposes. The Nusselt numbers computed are totally unrealistic as well:

(a) Ra = 6.4 · 108 (b) Ra = 2 · 109

Figure 4.12: Steady-state temperature maps, Smagorinsky LES model of a differentially heated cavity.

the average Nusselt is Nu0 = 126.818 for Ra = 6.4 ·108, while the DNS gave Nu0 = 48.19; the maximum

Nusselt is Numax = 614.97 for Ra = 2 · 109, while the DNS gave Numax = 197.32.

Although LES can be an interesting tool to analyze highly-turbulent DNSs, corrections on the other

three models presented must be adjusted to provide a consistent computation, since the Smagorinsky

model has demonstrated to be unsuitable for this problem.
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4.4 Final Considerations

Chapter 4 verified the codes developed both in laminar and in turbulent flows involving heat transfer

processes. The codes were able to provide a full resolution of the mass, momentum and energy equa-

tions. The three unknown of the equations (pressure, velocity and temperature) can be computed not

only at a particular instant of time, but also averaged for a preselected period of time.19

Both the 2D and 3D DNS codes are now able to be applied to the study of natural convection prob-

lems having different geometry, boundary conditions and initial conditions. In particular, they can be

used to estimate the heat transfer processes involved in a receiver of a Central Receiver System. The

LES code, instead, is still not ready to be used, although a deep inspection could make it possible to fix

it giving the possibility to have another efficient tool for the study of natural convection processes.

Natural convection can also be coupled with the conduction occurring at the receiver with the design

of a custom code that couples the conduction code validated in sec. 4.1.1 and the natural convection

codes.

19Actually, in the continuity, Navier-Stokes and energy equation also other unknowns appear: the thermophysical properties
ρ, µ, cP , k. However, as assumed in the study, they can be assumed to be functions of the temperature.
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5.1 Setup for the Application of the Codes to a Thermal Receiver

As presented in sec. 2.2.3, solar tower receivers can be structured in many different ways. The codes

developed in chapter 4 are able to solve with small modifications the natural convection occurring at a

panel of an external tubular receiver (the panel of 70 tubes shown in fig. 2.3(a) is a good example). The

receiver of Solar Two used in the performance analysis of sec. 2.4.3 is an example that can be studied

with the developed codes, and the natural convection losses calculated in the performance analysis

can be corrected to more realistic results. Following the study presented in sec. 2.4.3, the receiver

height is H = 6.2m. The average receiver temperature T r = 774K and the ambient temperature of

Tamb = 315.15K (42 ◦C) assumed in the analysis lead to a Rayleigh number for of Ra ≈ 7.7 · 1011

(being the thermophysical properties calculated using the formulas given in sec. B.5). Such a number,

given the limited CPU resources available for this study, makes the computational time needed too

large: the study of the differentially driven cavity problem done by Trias et al., in comparison, gives only

results up to a Rayleigh number of Ra = 1011, despite the use of the MareNostrum supercomputer

(>150000 CPUs) [81]. However, a possible modelization of the convection losses study solved with the

2D natural convection code developed is presented in fig. 5.1: following the setup that will be explained,

a first CFD analysis on the receiver can be performed, in case sufficient computational resources are

available. The codes developed so far worked with a rectangular cavity having the walls at different

Figure 5.1: Mesh and boundary conditions definition for the computational study of natural convection in a cylindri-
cal tubular receiver. The red line corresponds to a simplified panel of the receiver.

temperatures. In this model, the vertical west wall tries to recreate a flat panel of the tubular receiver.1

The central section corresponds to the receiver itself, having the average temperature of T r; the upper

and lower sections of the wall correspond to fictitious adiabatic walls. The three other walls represent

three fictitious walls having a temperature equal to Tamb. The role of the fictitious walls is to recreate
1The assumption of studying a flat panel as the receiver is the same made by Siebers & Krabaal: given the really thin boundary

layer that forms, the cylindrical surface can be assumed as a vertical flat surface [52].
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the phenomena occurring in the real convection at the receiver: the adiabatic walls drive the hot flux

upwards, without introducing nor dissipating energy; the walls at ambient temperature “artificially damp”

the energy absorbed by air, recreating the dispersion of the hot fluid in the ambient. It is crucial that

the fictitious walls have no noticeable effect on the flow close to the receiver panel, where the Nusselt

study is performed. For this reason, the energy-damping walls have to be put sufficiently distant from the

receiver: their placement at a farther position should not change the convective losses at the receiver.

The inner-layer at the hot panel must be well-resolved: the approach explained in sec. 4.3.2 can be

applied, applying horizontally an adjusted version of the hyperbolic mesh described by eq. 4.48. The

same mesh function can be used for spacing vertically the upper and lower west walls; vertical spacing

at the receiver can be constant, according to fig. 5.1.

An interesting consequence of the resolution of the computational problem is the possibility to create

a customized Nusselt correlation for the particular receiver analyzed, as a function of the Rayleigh

number: the new correlation takes into account the effect of the variable thermophysical properties, that

cannot be neglected for such high temperature gradients. The correlation obtained could be substituted

in eq. 2.15 and used to calculate the overall convective losses. As an illustrative case, the study is

performed on the 2D DHC of aspect ratio Ar = 4. Two cases of DHC are compared: the benchmark

(a) Benchmark configuration (b) Receiver configuration

Figure 5.2: Nu0 and Numax as a function of Ra, 2D DHC.

case, having the hot wall at Th = 305K and the cold wall at Tc = 295K, and the receiver case, having

the hot wall at Th = 774K and the cold wall at Tc = 315K. The Nusselt result of the benchmark case is

really close to the correlation computed by Trias et al, shown in fig. 5.2(a). Although the charts appear

to be quite similar, it is important to state that the difference of the maximum Nusselt numbers obtained

between the benchmark and the receiver case is rather high, especially for a high Rayleigh number.

Ra = 2 · 109, for example, involves that Numax ≈ 252 for the benchmark case, while Numax ≈ 280

for the receiver case. The same occurs with average Nusselt number, although the difference is less
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marked. The correlations for the Nusselt numbers in the receiver case is calculated. The first two

Rayleigh numbers analyzed are not taken into account, since the flow behavior differs significantly as

the viscous forces are still high: this can be seen in fig. 5.2(a), that shows that the average Nusselt

computed differs from the correlation obtained by Trias et al. Therefore, only seven Rayleigh numbers

have been analyzed, from Ra = 105 to Ra = 2 · 109. The correlations obtained, whose trend lines are

shown in fig. 5.2(b), are

Nu0 = 0.2565Ra0.259 Numax = 0.2495Ra0.328

Similar correlations (together with many others) could be obtained by solving a real case of natural

convection at the receiver, by means of the setup shown previously with the mesh designed in fig. 5.1.

The 2D setup can be easily extended to a third dimension (considering the depth of the panel), using

the 3D code developed.

5.2 Conclusions

This thesis describes and verifies a new code for the computational study of the mass, momentum

and energy transfer processes. The computational structure developed represents an efficient tool,

tailored in order to be able to be applied to solve natural convection problems that arise in a thermal

receiver of a CSP plant. The code gives a strong result, since it can provide the instant (or time-

averaged) values of:

• the local and global values of the heat transfer (through the Nusselt number);

• the velocity, temperature and pressure field throughout the whole domain;

• the local viscosity, conductivity and density of the fluid;

• the shear stress at the walls τw.

Other physical quantities of the fluid (such as vorticity, stream function, enthalpy, ...) could be easily

obtained whenever needed, applying small changes to the code. The computation of the fields is par-

ticularly precise, since it is carried out through a DNS, that fully solves the three equations. A possible

application of the code has been presented in sec. 5.1: the computation of a Nusselt correlation specific

to a receiver could be used in parallel to the correlation given by Siebers & Kraabel (eq. 2.14, 2.12, 2.11)

in order to assess the convective losses.

The code developed still presents many limitations, that must be acknowledged for a future use. Its

biggest limitation was the impossibility of testing it with a real case of convection: this operation is needed

to confirm that the assumptions made are correct. A limitation included in the discussion of the setup
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for the application of the code to a panel of a cylindrical receiver (sec. 5.1) was the fact that the average

temperature of the receiver T r was extended to the whole panel; although it can be a first approximation

useful to assess the global losses of the panel, in a real case the temperature varies significantly along

the panel. Although a variable temperature at the west wall of fig. 5.1 can be easily implemented in the

code, the difficult task is to hypothesize or compute the effective temperature distribution of the panel.

The conduction within the panel could be easily implemented using the code developed in sec. 4.1.1;

however, the forced conduction of the fluid flowing inside the tubes that compose the panel should be

calculated. In addition, the thermal radiation of the panel should be considered. The final local balance

for a node of the panel is shown in fig. 5.3. For the flow inside the tubes it is advisable to use a CFD

Figure 5.3: Panel modelization, with a magnification of the thermal balance at a particular node.

code, to be able to solve it with precision; in theory, the codes presented could be modified to solve

forced convection and applied to the inner fluid. Forced convection could be solved also for outer air,

giving the possibility to analyze windy conditions. In that case, the whole convection process could be

computed and the equations of Siebers & Kraabel would be completely substituted by a more realistic

model.2 In case of forced convection, a 3D simulation would become compulsory to simulate the flow

around the whole cylindrical receiver: the setup explained in the previous section would no longer be

valid, and an appropriate mesh should be developed to model the curved surface. The code could

also be refined to solve different geometries (to be applied, for example, to a cavity receiver). The

numerical approach could be modified in order to make the code more efficient: for example, with the

use of a higher-order discretization, an adaptive time-step method, or an alternative implicit solver for

the computation of pressure field. Moreover, parallelization of the code should be considered as a high-

priority implementation, in order to dramatically reduce the computational time. Last but not least, the

LES code could be corrected, giving the possibility to use it as an alternative to the DNS.

Although many ameliorations are still possible, a code able to provide a locally-detailed result of

natural convection has been provided, and it is ready to be applied.

2In fact, the authors acknowledge the limits of their correlation regarding forced convection [52].

82



Bibliography

[1] OECD (2017), renewable energy (indicator). Accessed on 10 August 2017. [Online]. Available:

https://data.oecd.org/energy/renewable-energy.htm
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A
Determining direct solar radiation

The Earth-Sun distance variates cyclically every year, influencing the extraterrestrial direct normal

radiation Gon. According to Spencer (1971) [88], the latter can be calculated from eq. A.1:

Gon = Gsc

(
1 + 0.033 cos

360n

365

)
(A.1)

The beam component of the extraterrestrial radiation crosses the atmospheric layers. Hottel (1976) [89]

suggested a model to calculate the beam radiation transmitted through the atmosphere. The atmo-

spheric transmittance for beam radiation, defined as τb = Gbn
Gon

, where Gbn is the beam normal radiation,

is equal to

τb = a0 + a1 e
− k

cos θz (A.2)

θz is the solar zenith angle (the angle between the normal of the Earth surface and the sun), and can be

obtained with eq. A.3

cos θz = cos δ cosω cosφ+ sin δ sinφ (A.3)

The angles appearing in the equation are shown in tab. A.1. The constants a0, a1, k appearing in eq. A.2
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Table A.1: Important angles for the definition of the solar coordinates.

δ the solar declination (the angular position of the sun at the solar noon) can be found by the
equation of Cooper (1969) [90]

δ = 23.45 sin

(
360

284 + n

365

)

ω the hour angle (the sun displacement from the east to the west meridian due to terrestrial
rotation) can be expressed as

ω = 15 t, t = 0 [h] at noon, being t the solar time

φ the latitude (the angular location respect to the equator) depends on the location of the col-
lector

can be found from

a∗0 = 0.4237− 0.00821 (6−A)2 (A.4a)

a∗1 = 0.5055 + 0.00595 (6.5−A)2 (A.4b)

k∗ = 0.4237− 0.00821 (6−A)2 (A.4c)

using the identities r0 = a0/a
∗
0, r1 = a1/a

∗
1 and rk = k/k∗, where r0, r1 and rk depend on climate types

and are given in tab. A.2. The parameter A that appears in the eq. A.4a, A.4b and A.4c is the altitude of

Table A.2: Correction Factors for Climate Types, Hottel model.

Climate Type r0 r1 rk

Tropical 0.95 0.98 1.02
Mid-latitude Summer 0.97 0.99 1.02
Subarctic Summer 0.99 0.99 1.01
Mid-latitude Winter 1.03 1.01 1.00

the site in kilometers.

Using the previous equations it is possible to calculate Gbn knowing Gon. Knowing Gbn, it is also

possible to calculate its projection on a horizontal surface Gb, by means of the zenith angle

Gb = Gbn cos θz (A.5)

where θz is obtained using eq. A.3.

92



B
Calculus

B.1 Calculus identities

∇(φψ) = φ∇ψ + ψ∇φ (B.1)

∇ · (φa) = (∇φ) · a + φ (∇ · a) (B.2)

∇ · (∇aT ) = ∇ (∇ · a) (B.3)

∇ · ∇a = ∆a = ∇2a (B.4)

∇ · (∇× a) = 0 (B.5)

(B.6)
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B.2 Divergence theorem

The divergence theorem states that the volume integral of the divergence of a vector is equal to the

net flux of the vector around the volume surfaces:

∫
V

∇ · a dV =

∫
S

a n dS (B.7)

B.3 Stream function and vorticity in two dimensions

Given u(x, y) = u(x, y) i + v(x, y) j and ψ = ψ1 (x, y) i + ψ2 (x, y) j + ψ3 (x, y) k, it is possible to

calculate the curl of ψ to apply the definition u = ∇×ψ

u =
(∂ψ3

∂y
−
�
�
��

0
∂ψ2

∂z

)
i−
(∂ψ3

∂x
−
�
�
��

0
∂ψ1

∂z

)
j +
(∂ψ2

∂x
− ∂ψ1

∂y

)
k (B.8)

Since u does not depend on the k component, the equation can be rewritten as

u =
∂ψ3

∂y
i− ∂ψ3

∂x
j (B.9)

Applying the vorticity definition ω = ∇× u, instead

∇× u =
��

��
��*

0(
0− ∂v

∂z

)
i

∂
∂z=0

−
��

�
��
�*0(

0− ∂u

∂z

)
j

∂
∂z=0

+
(∂v
∂x
− ∂u

∂y

)
k (B.10)

Therefore, the vorticity can be expressed as ω = ω k where ω = ∂v
∂x −

∂u
∂y .

B.4 Conduction between different materials

Given a face f between the nodes R and L, the conduction of both sides of the face must be the

same (q̇fl = q̇fr). The conduction heat flows can be expressed as

− kL
∂T

∂s

∣∣∣∣
f

= −kR
∂T

∂s

∣∣∣∣
f

(B.11)

The equation can be discretized as

kL
Tf − TL
dLf

= kR
TR − Tf
dRf

(B.12)
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Solving eq. B.12 it is possible to extract Tf

Tf =

kR
dRf

TR + kL
dLf

TL
kR
dRf

+ kL
dLf

(B.13)

Inserting Tf in the left or right-hand side of eq. B.11, the heat flux becomes

q̇f =
TR − TL
dRf
kR

+
dRf
kR

(B.14)

The equation can be reformulated as

q̇f = kf
TR − TL
dRL

(B.15)

where

kf =
dRL

dRf
kR

+
dRf
kR

(B.16)

B.5 Air properties as a function of the temperature, extracted from

Eckert & Drake

Dry air, T = 100÷ 1300K

ρ
[ kg
m3

]
=

101325

287T
(B.17a)

k
[ W

mK

]
=

2.648 · 10−3
√
T

1 + (245.4/T ) · 10−12/T
(B.17b)

cP

[ J

kgK
] = 1034.09− 2.849 · 10−1 T + 7.817 · 10−4 T 2 − 4.971 · 10−7 T 3 + 1.077 · 10−10 T 4 (B.17c)

µ
[ kg
ms

]
=

1.458 · 10−6 T 1.5

T + 110.40
(B.17d)
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C
Additional figures

(a) Temperature at P1 = (0.65, 0.56) (b) Temperature at P2 = (0.74, 0.72)

Figure C.1: 2D conduction – Temperature variation for the locations P1 and P2 for t ∈ [0 : 600] s.
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(a) UDS (b) SUDS (c) CDS

(d) QUICK (e) SMART

Figure C.2: Smith-Hutton problem – φ distribution for different convection schemes with a 21× 10 mesh, Pe = 106.

(a) Pe = 10 (b) Pe = 1000 (c) Pe = 106

Figure C.3: Smith-Hutton problem – φ distribution with a 101× 50 mesh, SMART scheme.

(a) Pe = 10 (b) Pe = 1000 (c) Pe = 106

Figure C.4: Comparison of different convection schemes – Smith-Hutton problem, outlet with a 101× 50 mesh.
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(a) Ra = 103 (b) Ra = 103

(c) Ra = 106 (d) Ra = 106

Figure C.13: Variable thermophysical properties DHC – 3D mid vertical planes temperature maps compared with
2D temperature map.
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(a) Ra = 103 (b) Ra = 106

Figure C.14: Variable thermophysical properties DHC – 3D mid vertical planes temperature maps.

(a) t = 401 s (b) t = 406 s (c) t = 407 s

Figure C.15: Turbulent driven cavity – stream function maps for Re = 10000.
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(a) Ra = 6.4 · 108 (b) Ra = 2 · 109

Figure C.18: Variable thermophysical properties 2D turbulent DHC – non-dimensional T and w time-averaged dis-
tribution along the mid z axis.
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